Advertisement

Acta Mechanica

, Volume 226, Issue 7, pp 2335–2345 | Cite as

Nano- and viscoelastic Beck’s column on elastic foundation

  • Teodor M. Atanackovic
  • Yanni Bouras
  • Dusan ZoricaEmail author
Original Paper

Abstract

Beck’s type column on a Winkler type foundation is the subject of the present analysis. Instead of the Bernoulli–Euler model describing the rod, two generalized models will be adopted: Eringen’s nonlocal model corresponding to nano-rods and a viscoelastic model of fractional Kelvin–Voigt type. The analysis shows that for a nano-rod the Herrmann–Smith paradox holds whilst for a viscoelastic rod it does not.

Keywords

Critical Load Fractional Derivative Elastic Foundation Viscoelastic Model Critical Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aranda-Ruiz J., Loya J., Fernández-Sáez J.: Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos. Struct. 94, 2990–3001 (2012)CrossRefGoogle Scholar
  2. 2.
    Atanackovic T.M.: Stability Theory of Elastic Rods. World Scientific, New Jersey (1997)zbMATHGoogle Scholar
  3. 3.
    Atanackovic T.M., Novakovic B.N., Vrcelj Z.: Application of Pontryagin’s principle to bimodal optimization of nano rods. Int. J. Struct. Stab. Dyn. 12, 1250012-1–1250012–11 (2012)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Atanackovic T.M., Novakovic B.N., Vrcelj Z.: Shape optimization against buckling of micro- and nano-rods. Arch. Appl. Mech. 82, 1303–1311 (2012)CrossRefzbMATHGoogle Scholar
  5. 5.
    Atanackovic T.M., Novakovic B.N., Vrcelj Z., Zorica D.: Rotating nanorod with clamped ends. Int. J. Struct. Stab. Dyn. 15, 1450050-1–1450050–8 (2015)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Atanackovic T.M., Pilipovic S., Stankovic B., Zorica D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley-ISTE, London (2014)CrossRefGoogle Scholar
  7. 7.
    Atanackovic T.M., Stankovic B.: On a system of differential equations with fractional derivatives arising in rod theory. J. Phys. A Math. Gen. 37, 1241–1250 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Atanackovic T.M., Zorica D.: Stability of the rotating compressed nano-rod. Zeitschrift für Angewandte Mathematik und Mechanik 94, 499–504 (2014)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Beck M.: Die Knicklast des einseitig eingespannten, tangential gedrückten Stabes. Zeitschrift für angewandte Mathematik und Physik 3, 225–228 (1952)CrossRefzbMATHGoogle Scholar
  10. 10.
    Becker M., Hauger W., Winzen W.: Influence of internal and external damping on the stability of Beck’s column on an elastic foundation. J. Sound Vib. 54, 468–472 (1977)CrossRefGoogle Scholar
  11. 11.
    Bigoni D., Noselli G.: Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Solids 59, 2208–2226 (2011)CrossRefGoogle Scholar
  12. 12.
    Bolotin V.V., Zhinzher N.I.: Effects of damping on stability of elastic systems subjected to nonconservative forces. Int. J. Solids Struct. 5, 965–989 (1969)CrossRefzbMATHGoogle Scholar
  13. 13.
    Challamel N., Wang C.M.: On lateral-torsional buckling of non-local beams. Adv. Appl. Math. Mech. 2, 389–398 (2010)MathSciNetGoogle Scholar
  14. 14.
    Elishakoff I.: Controversy associated with the so-called “follower forces”: critical overview. Appl. Mech. Rev. 58, 117–142 (2005)CrossRefGoogle Scholar
  15. 15.
    Elishakoff I., Pentaras D., Dujat K., Versaci C., Muscolino G., Storch J., Bucas S., Challamel N., Natsuki T., Zhang Y.Y., Wang C.M., Ghyselinck G.: Carbon Nanotubes and Nanosensors: Vibrations, Buckling and Ballistic Impact. ISTE and John Wiley & Sons, London, New York (2012)CrossRefGoogle Scholar
  16. 16.
    Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)zbMATHGoogle Scholar
  17. 17.
    Glavardanov V.B., Spasic D.T., Atanackovic T.M.: Stability and optimal shape of Pflüger micro/nano beam. Int. J. Solids Struct. 49, 2559–2567 (2012)CrossRefGoogle Scholar
  18. 18.
    Katsikadelis J.T., Tsiatas G.C.: Non-linear dynamic stability of damped Beck’s column with variable cross-section. Int. J. Non-Linear Mech. 42, 164–171 (2007)CrossRefGoogle Scholar
  19. 19.
    Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier B.V., Amsterdam (2006)zbMATHGoogle Scholar
  20. 20.
    Kirillov O.N., Seyranian A.P.: Solution to the Herrmann–Smith problem. Dokl. Phys. 47, 767–771 (2002)CrossRefGoogle Scholar
  21. 21.
    Koiter W.T.: Unrealistic follower forces. J. Sound Vib. 194, 636–638 (1996)CrossRefGoogle Scholar
  22. 22.
    Langthjem M.A., Sugiyama Y.: Dynamic stability of columns subjected to follower loads: a survey. J. Sound Vib. 238, 809–851 (2000)CrossRefGoogle Scholar
  23. 23.
    Li C., Lim C.W., Yu J.L., Zeng Q.C.: Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force. Int. J. Struct. Stab. Dyn. 11, 257–271 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ma H., Butcher E.A.: Stability of elastic columns with periodic retarded follower forces. J. Sound Vib. 286, 849–867 (2005)CrossRefGoogle Scholar
  25. 25.
    MacEwen K.W.: The follower load problem and bifurcation to periodic motions. Int. J. Non-Linear Mech. 39, 555–568 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Morgan M.R., Sinha S.C.: Influence of a viscoelastic foundation on the stability of Beck’s column: an exact analysis. J. Sound Vib. 91, 85–101 (1983)CrossRefzbMATHGoogle Scholar
  27. 27.
    Panovko J.G., Gubanova I.I.: Stability and Oscillation of Elastic Systems: Modern Concepts, Paradoxes and Errors (in Russian). Nauka, Moscow (1987)Google Scholar
  28. 28.
    Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Ruta G.C., Elishakoff I.: Towards the resolution of the Smith-Herrmann paradox. Acta Mech. 173, 89–105 (2004)CrossRefzbMATHGoogle Scholar
  30. 30.
    Singh A., Mukherjee R., Turner K., Shaw S.: MEMS implementation of axial and follower end forces. J. Sound Vib. 286, 637–644 (2005)CrossRefGoogle Scholar
  31. 31.
    Smith T.E., Herrmann G.: Stability of a beam on an elastic foundation subjected to a follower force. J. Appl. Mech. Trans. ASME. 39, 628–629 (1972)CrossRefGoogle Scholar
  32. 32.
    Stankovic B., Atanackovic T.M.: On a model of a viscoelastic rod. Fract. Calc. Appl. Anal. 4, 501–522 (2001)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Stankovic B., Atanackovic T.M.: On a viscoelastic rod with constitutive equation containing fractional derivative of two different orders. Math. Mech. Solids 9, 629–656 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Thai H.T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Wang C.M., Xiang Y., Kitipornchai S.: Postbuckling of micro and nano rods/tubes based on nonlocal beam theory. Int. J. Appl. Mech. 1, 259–266 (2009)CrossRefGoogle Scholar
  36. 36.
    Wang C.M., Zhang Y.Y., He X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401–105409 (2007)CrossRefGoogle Scholar
  37. 37.
    Wang C.M., Zhang Y.Y., Ramesh S.S., Kitipornchai S.: Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006)CrossRefGoogle Scholar
  38. 38.
    Young T.H., Juan C.S.: Dynamic stability and response of fluttered beams subjected to random follower forces. Int. J. Non-Linear Mech. 38, 889–901 (2003)CrossRefzbMATHGoogle Scholar
  39. 39.
    Zamani V., Kharazmi E., Mukherjee R.: Asymmetric post-flutter oscillations of a cantilever due to a dynamic follower force. J. Sound Vib. 340, 253–266 (2015)CrossRefGoogle Scholar
  40. 40.
    Ziegler H.: Die Stabiliätskriterien der Elastomechanik. Ingenieur-Archiv 20, 49–56 (1952)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Teodor M. Atanackovic
    • 1
  • Yanni Bouras
    • 2
  • Dusan Zorica
    • 3
    Email author
  1. 1.Department of Mechanics, Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.College of Engineering and ScienceVictoria UniversityMelbourneAustralia
  3. 3.Mathematical InstituteSerbian Academy of Arts and SciencesBelgradeSerbia

Personalised recommendations