Skip to main content
Log in

A shear deformable conical shell formulation in the framework of couple stress theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the governing equations of the conical shell are derived by using the first-order shear deformable shell model and taking into account the size parameter through couple stress theory. In order to obtain the governing equations, Hamilton’s principle is used and the equations of shell motion with partial differentials are derived along with classical and non-classical boundary conditions. Finally, the free vibration of the single-walled carbon nanocone (SWCNC) is scrutinized through examples. The SWCNC is modeled as simply supported, and the Galerkin method is used to solve the vibration problem. The results of the new model are compared with those of the classical theory, which point to the conclusion that the classical model is a special case of couple stress theory. Results also reveal that nanoshell rigidity in the couple stress theory is greater than that in the classical theory, which leads to an increase in natural frequencies. Moreover, the study investigates the effect of the size parameter on nanoshell vibration for different lengths and apex angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shenderova O., Lawson B., Areshkin D., Brenner D.: Predicted structure and electronic properties of individual carbon nanocones and nanostructures assembled from nanocones. Nanotechnology 12(3), 191 (2001)

    Article  Google Scholar 

  2. Knaapila M., Rømoen O.T., Svåsand E., Pinheiro J.P., Martinsen Ø.G., Buchanan M., Skjeltorp A.T., Helgesen G.: Conductivity enhancement in carbon nanocone adhesive by electric field induced formation of aligned assemblies. ACS Appl. Mater. Interfaces 3(2), 378–384 (2011)

    Article  Google Scholar 

  3. Charlier J.-C., Rignanese G.-M.: Electronic structure of carbon nanocones. Phys. Rev. Lett. 86(26), 5970 (2001)

    Article  Google Scholar 

  4. Shirkavand Hadavand B., Mahdavi Javid K., Gharagozlou M.: Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des. 50, 62–67 (2013). doi:10.1016/j.matdes.2013.02.039

    Article  Google Scholar 

  5. Zhou L., Shi S.: Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Comput. Mater. Sci. 23(1), 166–174 (2002)

    Article  Google Scholar 

  6. Shibuta Y., Maruyama S.: Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chem. Phys. Lett. 382(3), 381–386 (2003)

    Article  Google Scholar 

  7. Mylvaganam K., Zhang L.: Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes. Carbon 42(10), 2025–2032 (2004)

    Article  Google Scholar 

  8. Wei J., Liew K., He X.: Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91(26), 261906–261906-261903 (2007)

    Article  Google Scholar 

  9. Kumar D., Verma V., Bhatti H., Dharamvir K.: Elastic moduli of carbon nanohorns. J. Nanomater. 2011, 13 (2011)

    Google Scholar 

  10. Hu Y.-G., Liew K., He X., Li Z., Han J.: Free transverse vibration of single-walled carbon nanocones. Carbon 50(12), 4418–4423 (2012)

    Article  Google Scholar 

  11. Yan J., Liew K., He L.: Buckling and post-buckling of single-wall carbon nanocones upon bending. Compos. Struct. 106, 793–798 (2013)

    Article  Google Scholar 

  12. Guo S.-Q., Yang S.-P.: Axial vibration analysis of nanocones based on nonlocal elasticity theory. Acta Mech. Sin. 28(3), 801–807 (2012)

    Article  MathSciNet  Google Scholar 

  13. Firouz-Abadi R., Fotouhi M., Haddadpour H.: Free vibration analysis of nanocones using a nonlocal continuum model. Phys. Lett. A 375(41), 3593–3598 (2011)

    Article  Google Scholar 

  14. Ghorbanpour Arani A., Kolahchi R., Haghighi S., Barzoki A.M.: Nonlinear viscose flow induced nonlocal vibration and instability of embedded DWCNC via DQM. J. Mech. Sci. Technol. 27(1), 21–31 (2013)

    Article  Google Scholar 

  15. Fotouhi M.M., Firouz-Abadi R.D., Haddadpour H.: Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model. Int. J. Eng. Sci. 64, 14–22 (2013). doi:10.1016/j.ijengsci.2012.12.003

    Article  MathSciNet  Google Scholar 

  16. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965). doi:10.1016/0020-7683(65)90006-5

    Article  Google Scholar 

  17. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.) Advances in Applied Mechanics, vol. 33, pp. 295–361 (1997)

  18. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003). doi:10.1016/S0022-5096(03)00053-X

    Article  MATH  Google Scholar 

  19. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002). doi:10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  20. Roque C.M.C., Ferreira A.J.M., Reddy J.N.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37(7), 4626–4633 (2013). doi:10.1016/j.apm.2012.09.063

    Article  MathSciNet  Google Scholar 

  21. Şimşek M., Reddy J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013). doi:10.1016/j.ijengsci.2012.12.002

    Article  Google Scholar 

  22. Akgöz B., Akgöz B.: Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Mater. Des. 42, 164–171 (2012). doi:10.1016/j.matdes.2012.06.002

    Article  Google Scholar 

  23. Dashtaki P.M., Tadi Beni Y.: Effects of Casimir force and thermal stresses on the buckling of electrostatic nanobridges based on couple stress theory. Arab. J. Sci. Eng. 39(7), 5753–5763 (2014). doi:10.1007/s13369-014-1107-6

    Article  Google Scholar 

  24. Chen W., Xu M., Li L.: A model of composite laminated Reddy plate based on new modified couple stress theory. Compos. Struct. 94(7), 2143–2156 (2012). doi:10.1016/j.compstruct.2012.02.009

    Article  Google Scholar 

  25. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids. Struct. 46(13), 2757–2764 (2009). doi:10.1016/j.ijsolstr.2009.03.004

    Article  MATH  Google Scholar 

  26. Ke L.-L., Wang Y.-S., Yang J., Kitipornchai S.: Nonlinear free vibration of size-dependent functionally graded microbeams. Int. J. Eng. Sci. 50(1), 256–267 (2012). doi:10.1016/j.ijengsci.2010.12.008

    Article  MathSciNet  Google Scholar 

  27. Reddy J.N., Kim J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94(3), 1128–1143 (2012). doi:10.1016/j.compstruct.2011.10.006

    Article  Google Scholar 

  28. Zeverdejani M.K., Beni Y.T.: The nano scale vibration of protein microtubules based on modified strain gradient theory. Curr. Appl Phys. 13(8), 1566–1576 (2013). doi:10.1016/j.cap.2013.05.019

    Article  Google Scholar 

  29. Beni Y.T., Abadyan M.: Size-dependent pull-in instability of torsional nano-actuator. Phys. Scr. 88(5), 055801 (2013)

    Article  Google Scholar 

  30. Tadi Beni Y., Abadyan M., Noghrehabadi A.: Investigation of Size Effect on the Pull-in Instability of Beam-type NEMS under van der Waals Attraction. Procedia Eng. 10, 1718–1723 (2011). doi:10.1016/j.proeng.2011.04.286

    Article  Google Scholar 

  31. Beni Y.T., Abadyan M.: Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force. Int. J. Mod. Phys. B 27(18), 1350083 (2013). doi:10.1142/S0217979213500835

    Article  MathSciNet  Google Scholar 

  32. Abadyan M., Tadi Beni Y., Noghrehabadi A.: Investigation of elastic boundary condition on the pull-in instability of beam-type NEMS under van der Waals attraction. Procedia Eng. 10, 1724–1729 (2011). doi:10.1016/j.proeng.2011.04.287

    Article  Google Scholar 

  33. Ghavanloo E., Fazelzadeh S.A.: Free vibration analysis of orthotropic doubly-curved shallow shells based on the gradient elasticity. Compos. Part B 45(1), 1448–1457 (2013). doi:10.1016/j.compositesb.2012.09.054

    Article  Google Scholar 

  34. Yan Y., Wang W., Zhang L.: Free vibration of the fluid-filled single-walled carbon nanotube based on a double shell-potential flow model. Appl. Math. Model. 36(12), 6146–6153 (2012). doi:10.1016/j.apm.2012.02.014

    Article  MathSciNet  Google Scholar 

  35. Jannesari H., Emami M.D., Karimpour H.: Investigating the effect of viscosity and nonlocal effects on the stability of SWCNT conveying flowing fluid using nonlinear shell model. Phys. Lett. A 376(12–13), 1137–1145 (2012). doi:10.1016/j.physleta.2012.02.008

    Article  Google Scholar 

  36. Ghorbanpour Arani A., Zarei M.S., Amir S., Khoddami Maraghi Z.: Nonlinear nonlocal vibration of embedded DWCNT conveying fluid using shell model. Phys. B 410, 188–196 (2013). doi:10.1016/j.physb.2012.10.037

    Article  Google Scholar 

  37. Lazopoulos K.A., Lazopoulos A.K.: Nonlinear strain gradient elastic thin shallow shells. Eur. J. Mech. A. Solids 30(3), 286–292 (2011). doi:10.1016/j.euromechsol.2010.12.011

    Article  MATH  MathSciNet  Google Scholar 

  38. Ghorbanpour Arani A., Kolahchi R., Khoddami Maraghi Z.: Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory. Appl. Math. Model. 37(14–15), 7685–7707 (2013). doi:10.1016/j.apm.2013.03.020

    Article  MathSciNet  Google Scholar 

  39. Hu Y.-G., Liew K.M., Wang Q., He X.Q., Yakobson B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 56(12), 3475–3485 (2008). doi:10.1016/j.jmps.2008.08.010

    Article  MATH  Google Scholar 

  40. Shi M.X., Li Q.M., Huang Y.: A nonlocal shell model for mode transformation in single-walled carbon nanotubes. J. Phys. Condens. Matter 21(45), 455301 (2009)

    Article  Google Scholar 

  41. Daneshmand F., Rafiei M., Mohebpour S.R., Heshmati M.: Stress and strain-inertia gradient elasticity in free vibration analysis of single walled carbon nanotubes with first order shear deformation shell theory. Appl. Math. Model. 37(16–17), 7983–8003 (2013). doi:10.1016/j.apm.2013.01.052

    Article  MathSciNet  Google Scholar 

  42. Xinping Z., Lin W.: Vibration and stability of micro-scale cylindrical shells conveying fluid based on modified couple stress theory. Micro Nano Lett. 7(7), 679–684 (2012). doi:10.1049/mnl.2012.0184

    Article  Google Scholar 

  43. Papargyri-Beskou S., Tsinopoulos S.V., Beskos D.E.: Wave propagation in and free vibrations of gradient elastic circular cylindrical shells. Acta Mech. 223(8), 1789–1807 (2012). doi:10.1007/s00707-012-0643-y

    Article  MATH  MathSciNet  Google Scholar 

  44. Zeighampour H., Tadi Beni Y.: Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Phys. E: Low-dimens. Syst. Nanostruct. 61, 28–39 (2014)

    Article  Google Scholar 

  45. Zeighampour H., Tadi Beni Y.: Cylindrical thin-shell model based on modified strain gradient theory. Int. J. Eng. Sci. 78, 27–47 (2014)

    Article  MathSciNet  Google Scholar 

  46. Leissa, A.W.: Vibration of Shells. Published for the Acoustical Society of America Through the American Institute of Physics (1993)

  47. Dung D.V., Hoa L.K., Nga N.T.: On the stability of functionally graded truncated conical shells reinforced by functionally graded stiffeners and surrounded by an elastic medium. Compos. Struct. 108, 77–90 (2014)

    Article  Google Scholar 

  48. Ansari R., Rouhi H., Nasiri Rad A.: Vibrational analysis of carbon nanocones under different boundary conditions: an analytical approach. Mech. Res. Commun. 56, 130–135 (2014)

    Article  Google Scholar 

  49. Ansari, R., Momen, A., Rouhi, S., Ajori, S.: On the vibration of single-walled carbon nanocones: molecular mechanics approach versus molecular dynamics simulations. Shock Vib. (2014), Article ID 410783 (2014)

  50. Yu M.-F., Lourie O., Dyer M.J., Moloni K., Kelly T.F., Ruoff R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000)

    Article  Google Scholar 

  51. Ru C.: Effective bending stiffness of carbon nanotubes. Phys. Rev. B 62(15), 9973 (2000)

    Article  Google Scholar 

  52. Fakhrabadi M.M.S., Khani N., Omidvar R., Rastgoo A.: Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Comput. Mater. Sci. 61, 248–256 (2012)

    Article  Google Scholar 

  53. Sun L., Han R.P., Wang J., Lim C.: Modeling the size-dependent elastic properties of polymeric nanofibers. Nanotechnology 19(45), 455706 (2008)

    Article  Google Scholar 

  54. Maranganti R., Sharma P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55(9), 1823–1852 (2007)

    Article  MATH  Google Scholar 

  55. Al-Rub, R.K.A., Voyiadjis, G.: Determination of the material intrinsic length scale of gradient plasticity theory. Int. J. Multiscale Comput. Eng. 2(3), 377–400 (2004)

  56. Park S., Gao X.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)

    Article  Google Scholar 

  57. Chen C., Shi Y., Zhang Y., Zhu J., Yan Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)

    Article  Google Scholar 

  58. Wang L., Zheng Q., Liu J.Z., Jiang Q.: Size dependence of the thin-shell model for carbon nanotubes. Phys. Rev. Lett. 95(10), 105501 (2005)

    Article  Google Scholar 

  59. Yakobson B.I., Brabec C., Bernholc J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeighampour, H., Beni, Y.T. & Mehralian, F. A shear deformable conical shell formulation in the framework of couple stress theory. Acta Mech 226, 2607–2629 (2015). https://doi.org/10.1007/s00707-015-1318-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1318-2

Keywords

Navigation