Advertisement

Acta Mechanica

, Volume 226, Issue 8, pp 2537–2553 | Cite as

Stochastic natural frequency of composite conical shells

  • S. DeyEmail author
  • T. Mukhopadhyay
  • H. H. Khodaparast
  • S. Adhikari
Article

Abstract

The present study portrays the stochastic natural frequencies of laminated composite conical shells using a surrogate model (D-optimal design) approach. The rotary inertia and transverse shear deformation are incorporated in probabilistic finite element analysis with uncertainty due to variation in angle of twist. A sensitivity analysis is carried out to address the influence of different input parameters on the output natural frequencies. Typical fiber orientation angle and material properties are randomly varied to obtain the stochastic natural frequencies. The sampling size and computational cost are exorbitantly reduced by employing the present approach compared to direct Monte Carlo simulation. Statistical analysis is presented to illustrate the results. The stochastic natural frequencies obtained are the first known results for the type of analyses carried out here.

Keywords

Monte Carlo Simulation Twist Angle Conical Shell Direct Monte Carlo Simulation Probability Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell T.J.: An algorithm for the construction of D-optimal experimental designs. Technometrics 16(2), 203–210 (1974)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Michael J.B., Norman R.D.: On minimum-point second-order designs. Technometrics 16(4), 613–616 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Craig, J.A.: D-Optimal Design Method: Final Report and User’s Manual. USAF Contract F33615-78-C-3011, FZM-6777, General Dynamics. Forth Worth Div. (1978)Google Scholar
  4. 4.
    Montgomery D.C.: Design and Analysis of Experiments. Wiley, New Jersey (1991)zbMATHGoogle Scholar
  5. 5.
    Unal R., Stanley D.O., Lepsch R.A.: Parametric modeling using saturated experimental designs. J. Parametr. XVI(1), 3–18 (1996)Google Scholar
  6. 6.
    Giunta, A.A, Balabanov, V., Haim, D., Grossman, B., Mason, W.H., Watson, L.T.: Wing design for high-speed civil transport using DOE methodology, USAF/NASA/ ISSMO Symposium, AIAA Paper 96-4001 (1996)Google Scholar
  7. 7.
    Radoslav H.: Multiplicative methods for computing D-optimal stratified designs of experiments. J. Stat. Plan. Inference 146, 82–94 (2014)zbMATHCrossRefGoogle Scholar
  8. 8.
    Goyal V.K., Kapania R.K.: Dynamic stability of uncertain laminated beams subjected to subtangential loads. Int. J. Solids Struct. 45(10), 2799–2817 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Shaker A., Abdelrahman W.G., Tawfik M., Sadek E.: Stochastic finite element analysis of the free vibration of laminated composite plates. Comput. Mech. 41, 495–501 (2008)CrossRefGoogle Scholar
  10. 10.
    Fang C., Springer G.S.: Design of composite laminates by a Monte Carlo method. Compos. Mater. 27(7), 721–753 (1993)CrossRefGoogle Scholar
  11. 11.
    Sasikumar P., Suresh R., Gupta S.: Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities. Acta Mech. 225, 1503–1522 (2014)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ankenmann B., Nelson B.L., Staum J.: Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Park J.S., Kim C.G., Hong C.S.: Stochastic finite element method for laminated composite structures. J. Reinf. Plast. Compos. 14(7), 675–693 (1995)Google Scholar
  14. 14.
    Ganesan R., Kowda V.K.: Free vibration of composite beam-columns with stochastic material and geometric properties subjected to random axial loads. J. Reinf. Plast. Compos. 24(1), 69–91 (2005)CrossRefGoogle Scholar
  15. 15.
    Yue R.-X., Liu X., Chatterjee K.: D-optimal designs for multi-response linear models with a qualitative factor. J. Multivar. Anal. 124, 57–69 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Choi H., Kang M.: Optimal sampling frequency for high frequency data using a finite mixture model. J. Korean Stat. Soc. 43(2), 251–262 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Xu M., Qiu Z., Wang X.: Uncertainty propagation in SEA for structural—acoustic coupled systems with non-deterministic parameters. J. Sound Vib. 333(17), 3949–3965 (2014)CrossRefGoogle Scholar
  18. 18.
    Kuttenkeuler J.: A finite element based modal method for determination of plate stiffnesses considering uncertainties. J. Compos. Mater. 33(8), 695–711 (1999)CrossRefGoogle Scholar
  19. 19.
    Ghanem R.G., Spanos P.D.: Stochastic Finite Elements—A Spectral Approach. Revised. Dover Publications Inc., NY (2002)Google Scholar
  20. 20.
    Kishor D.K., Ganguli R., Gopalakrishnan S.: Uncertainty analysis of vibrational frequencies of an incompressible liquid in a rectangular tank with and without a baffle using polynomial chaos expansion. Acta Mech. 220(1-4), 257–273 (2011)zbMATHCrossRefGoogle Scholar
  21. 21.
    Shaker A., Abdelrahman W.G., Tawfik M., Sadek E.: Stochastic finite element analysis of the free vibration of laminated composite plates. Comput. Mech. 41(4), 493–501 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Dey S., Mukhopadhyay T., Adhikari S.: Stochastic free vibration analysis of angle-ply composite plates–a RS-HDMR approach. Compos. Struct. 122, 526–536 (2015)CrossRefGoogle Scholar
  23. 23.
    Dey S., Mukhopadhyay T., Adhikari S.: Stochastic free vibration analyses of composite doubly curved shells—A Kriging model approach. Compos. Part B Eng. 70, 99–112 (2015)CrossRefGoogle Scholar
  24. 24.
    Dey S., Karmakar A.: Finite element analyses of bending stiff composite conical shells with multiple delamination. J. Mech. Mater. Struct. 7(2), 213–224 (2012)CrossRefGoogle Scholar
  25. 25.
    Liew K.M., Lim C.M., Ong L.S.: Vibration of pretwisted cantilever shallow conical shells. I. J. Solids Struct. 31, 2463–2474 (1994)zbMATHCrossRefGoogle Scholar
  26. 26.
    Jones R.M.: Mechanics of Composite Materials. McGraw-Hill Book Co., NY (1975)Google Scholar
  27. 27.
    Cook R.D., Malkus D.S., Plesha M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989)zbMATHGoogle Scholar
  28. 28.
    Meirovitch L.: Dynamics and Control of Structures. Wiley, New York (1992)Google Scholar
  29. 29.
    Karmakar A., Sinha P.K.: Failure analysis of laminated composite pretwisted rotating plates. J. Reinf. Plast. Compos. 20, 1326–1357 (2001)CrossRefGoogle Scholar
  30. 30.
    Bathe K.J.: Finite Element Procedures in Engineering Analysis. PHI, New Delhi (1990)Google Scholar
  31. 31.
    Carpenter, W.C.: Effect of design selection on response surface performance. NASA Contractor Report 4520 (1993)Google Scholar
  32. 32.
    Mukhopadhyay, T., Dey, T.K., Dey, S., Chakrabarti, A.: Optimization of fiber reinforced polymer web core bridge deck—a hybrid approach. Struct. Eng. Int. IABSE. 24(2), (2015). doi: 10.2749/101686614X14043795570778
  33. 33.
    Giunta, A.A., Wojtkiewicz, S.F., Eldred, M.S.: Overview of modern design of experiments methods for computational simulations. In: Proceedings of the 41st American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit, Paper AIAA 2003–0649 Reno, NV (2003)Google Scholar
  34. 34.
    Santner T.J., Williams B., Notz W.: The Design and Analysis of Computer Experiments. Springer, Heidelberg (2003)zbMATHCrossRefGoogle Scholar
  35. 35.
    Koehler J.R., Owen A.B.: Computer experiments. In: Ghosh, S., Rao, C.R. (eds.) Handbook of Statistics, vol.13, pp. 261–308. Elsevier Science B.V., Amsterdam (1996)Google Scholar
  36. 36.
    Koziel, S., Yang, X.-S. (eds.) Computational Optimization, Methods and Algorithms. Springer, Berlin, ISBN: 978-3-642-20858-4, (Print) 978-3-642-20859-1Google Scholar
  37. 37.
    Jin R., Chen W., Simpson T.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidiscip. Optim. 23(1), 1–13 (2001)CrossRefGoogle Scholar
  38. 38.
    Kim B.S., Lee Y.B., Choi D.H.: Comparison study on the accuracy of metamodeling technique for non-convex functions. J. Mech. Sci. Techn. 23(4), 1175–1181 (2009)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mukhopadhyay, T., Dey, T.K., Chowdhury, R., Chakrabarti, A.: Structural damage identification using response surface-based multi-objective optimization: A comparative study. Arab. J. Sci. Eng. (2015). doi: 10.1007/s13369-015-1591-3
  40. 40.
    Qatu M.S., Leissa A.W.: Natural frequencies for cantilevered doubly-curved laminated composite shallow shells. Compos. Struct. 17, 227–255 (1991)CrossRefGoogle Scholar
  41. 41.
    Qatu M.S., Leissa A.W.: Vibration studies for laminated composite twisted cantilever plates. Int. J. Mech. Sci. 33(11), 927–940 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • S. Dey
    • 1
    Email author
  • T. Mukhopadhyay
    • 1
  • H. H. Khodaparast
    • 1
  • S. Adhikari
    • 1
  1. 1.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations