Skip to main content
Log in

A nonlocal treatment technique based on the background cell concept for micro-mechanical damage modeling

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, a new nonlocal treatment for micro-mechanical damage modeling is introduced based on the background cell concept. The nonlocal damage variable in the modified GTN damage model is defined as the weighted porosity in analogy to the element-free Galerkin method. The evolution of the damage variable is related to the support domain surrounds the integration point. The efficient computational algorithm is taken from the regular background cell and implemented into the commercial finite element code ABAQUS via the user interface UMAT for both two-dimensional and three-dimensional problems. To verify the nonlocal damage model, extensive computational simulations of 2D and 3D cracked as well as holed specimens are presented and confirmed that the nonlocal damage overcomes mesh sensitivity and is computationally more efficient than other nonlocal treatment methods. The computational simulation of a compact-tension shear specimen reveals that the nonlocal damage model is able to predict mixed-mode crack growth independently of the element orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leblond J.B., Perrin G., Devaux J.: Bifurcation effects in ductile metals with nonlocal damage. J. Appl. Mech. 61, 236–242 (1994)

    Article  MATH  Google Scholar 

  2. Tvergaard V., Needleman A.: Effects of nonlocal damage in porous plastic solids. Int. J. Solids Struct. 32, 1063–1077 (1995)

    Article  MATH  Google Scholar 

  3. Chen J., Yuan H.: A micro-mechanical damage model based on gradient plasticity: algorithms and applications. Int. J. Numer. Methods Eng. 54, 399–420 (2002)

    Article  MATH  Google Scholar 

  4. Vardoulakis I., Aifantis E.C.: A gradient flow theory of plasticity for granular materials. Acta Mech. 87, 197–217 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Peerlings R.H.J., De Borst R., Brekelmans W.A.M.: Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39, 3391–3403 (1996)

    Article  MATH  Google Scholar 

  6. Ramaswamy S., Aravas N.: Finite element implementation of gradient plasticity models part II: gradient-dependent evolution equations. Comput. Meth. Appl. Mech. Eng. 163, 33–53 (1998)

    Article  Google Scholar 

  7. Yuan H., Chen J.: Analysis of size effects based on a symmetric lower-order gradient plasticity model. Comput. Mater. Sci. 19, 143–157 (2000)

    Article  Google Scholar 

  8. Yuan H., Chen J.: Identification of the intrinsic material length in gradient plasticity theory from micro-indentation tests. Int. J. Solids Struct. 38, 8171–8187 (2001)

    Article  MATH  Google Scholar 

  9. Yi D., Wang T.C., Xiao Z.: Strain gradient theory based on a new framework of non-local model. Acta Mech. 212, 51–67 (2010)

    Article  MATH  Google Scholar 

  10. De Borst R.: Simulation of strain localization: a reappraisal of the the Cosserat continuum. Eng. Comput. 8, 317–332 (1991)

    Article  Google Scholar 

  11. Iordache M.-M., Willam K.: Localized failure analysis in elastoplastic Cosserat continua. Comput. Meth. Appl. Mech. Eng. 151, 559–586 (1998)

    Article  MATH  Google Scholar 

  12. Huang W., Bauer E.: Numerical investigations of shear localization in a micro-polar hypoplastic material. Int. J. Numer. Anal. Methods Geomech. 27, 325–352 (2003)

    Article  MATH  Google Scholar 

  13. Tordesillas A., Peters J.F., Gardiner B.S.: Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Numer. Anal. Methods Geomech. 28, 981–1010 (2004)

    Article  MATH  Google Scholar 

  14. Ehlers W., Scholz B.: An inverse algorithm for the identification and the sensitivity analysis of the parameters governing micropolar elasto-plastic granular material. Arch. Appl. Mech. 77, 911–931 (2007)

    Article  MATH  Google Scholar 

  15. Dias da Silva V.: A simple model for viscous regularization of elasto-plastic constitutive laws with softening. Commun. Numer. Methods Eng. 20, 547–568 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Niazi M.S., Wisselink H.H., Meinders T.: Viscoplastic regularization of local damage models: revisited. Comput. Mech. 51, 203–216 (2013)

    Article  MATH  Google Scholar 

  17. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Meth. Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  18. Askes H., Pamin J., de Borst R.: Dispersion analysis and element-free Galerkin solutions of second- and fourth-order gradient-enhanced damage models. Int. J. Numer. Methods Eng. 49, 811–832 (2000)

    Article  MATH  Google Scholar 

  19. Liu H.T., Han Z.D., Rajendran A.M., Atluri S.N.: Computational modeling of impact response with the RG damage model and the meshless local Petrov–Galerkin (MLPG) approaches. Comput. Mater. Contin. 4, 43–53 (2006)

    MATH  Google Scholar 

  20. Pan X., Yuan H.: Nonlocal damage modelling using the element-free Galerkin method in the frame of finite strains. Comput. Mater. Sci. 46, 660–666 (2009)

    Article  Google Scholar 

  21. Pan X., Yuan H.: Applications of meshless methods for damage computations with finite strains. Modell. Simul. Mater. Sci. Eng. 17, 045005 (2009)

    Article  Google Scholar 

  22. Pan X., Yuan H.: Computational algorithms and applications of element-free Galerkin methods for nonlocal damage models. Eng. Fract. Mech. 77, 2640–2653 (2010)

    Article  Google Scholar 

  23. Gurson A.L.: Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  24. Tvergaard V., Needleman A.: Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 32, 157–169 (1984)

    Article  Google Scholar 

  25. ABAQUS Version 6.11. Theory Manual. Section 4.3.6. Porous Metal Plasticity. Dassault Systémes Simulia Corp., Providence

  26. Aravas N.: On the numerical integration of a class of pressure-dependent plasticity models. Int. J. Numer. Methods Eng. 24, 1395–1416 (1987)

    Article  MATH  Google Scholar 

  27. ABAQUS Version 6.11. User Subroutines Reference Manual. Dassault Systémes Simulia Corp., Providence

  28. Kucharski S., Mróz Z.: Identification of yield stress and plastic hardening parameters from a spherical indentation test. Int. J. Mech. Sci. 49, 1238–1250 (2007)

    Article  Google Scholar 

  29. Schwalbe K.-H., Newman J.C. Jr, Shannon J.L. Jr: Fracture mechanics testing on specimens with low constraint–standardisation activities within ISO and ASTM. Eng. Fract. Mech. 72, 557–576 (2005)

    Article  Google Scholar 

  30. Bažant Z.P., Jirásek M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128, 1119–1149 (2002)

    Article  Google Scholar 

  31. Richard H.A., Benitz K.: A loading device for the creation of mixed mode in fracture mechanics. Int. J. Fract. 22, R55–R58 (1983)

    Article  Google Scholar 

  32. Sander M., Richard H.A.: Experimental and numerical investigations on the influence of the loading direction on the fatigue crack growth. Int. J. Fatigue 28, 583–591 (2006)

    Article  MATH  Google Scholar 

  33. Aoki S., Kishimoto K., Yoshida T., Sakata M.: A finite element study of the near crack tip deformation of a ductile material under mixed mode loading. J. Mech. Phys. Solids 35, 431–455 (1987)

    Article  Google Scholar 

  34. Ghosal A.K., Narasimhan R.: A finite element analysis of mixed-mode fracture initiation by ductile failure mechanisms. J. Mech. Phys. Solids. 42, 953–978 (1994)

    Article  MATH  Google Scholar 

  35. Nahshon K., Hutchinson J.W.: Modification of the Gurson model for shear failure. Eur. J. Mech. A. Solids. 27, 1–17 (2008)

    Article  MATH  Google Scholar 

  36. Erdogan F., Sih G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Pan, X. & Yuan, H. A nonlocal treatment technique based on the background cell concept for micro-mechanical damage modeling. Acta Mech 226, 1529–1547 (2015). https://doi.org/10.1007/s00707-014-1268-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1268-0

Keywords

Navigation