Skip to main content
Log in

Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The size effect on orthotropic Kirchhoff-type skew micro-plates is investigated based on a modified couple stress theory. For a three-dimensional orthotropic body, three additional material length scale parameters should be involved in the modified couple stress theory (with respect to the three shear moduli). However, in this study and without restricting the generality, we assume that the 2D couple stress state of the orthotropic micro-plate is described solely by only one material length scale parameter in accordance with the in-plane shear modulus. Furthermore, this reasonable assumption allows us to compare qualitatively the results with those obtained by the nonlocal elasticity theory, which also uses only one material length scale parameter to capture the size effect. Using Hamilton’s principle, the governing equilibrium equation of the micro-plate and the associated general boundary conditions are derived in terms of the deflection. The resulting initial boundary value problem is of fourth order, and it is solved employing the analog equation method. Example problems are presented for orthotropic skew micro-plates, and useful conclusions are drawn from the investigation of their micron-scale response. Some of the findings detected in studying the microstructure vibratory response of orthotropic skew micro-plates, based on the modified couple stress theory, are also verified by those obtained by the nonlocal elasticity theory. Nevertheless, a new important finding is that both the frequency and critical load parameters increase by increasing the material length scale parameter of the modified couple stress theory, which is in direct contradiction to that of the nonlocal elasticity theory where these parameters decrease by increasing the nonlocal parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lam D.C.C., Yang F., Chong A.C.M., Wang J., Tong P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  2. Narendar S., Gopalakrishnan S.: Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech. 223, 395–413 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Papargyri-Beskou S., Giannakopoulos A.E., Beskos D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755–2766 (2010)

    Article  MATH  Google Scholar 

  4. Lu P., Zhang P.Q., Lee H.P., Wang C.M., Reddy J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Tsiatas G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  6. Lazopoulos K.A.: On bending of strain gradient elastic micro-plates. Mech. Res. Commun. 36, 777–783 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Yin L., Qian Q., Wang L., Xia W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sin. 23, 386–393 (2010)

    Article  Google Scholar 

  8. Jomehzadeh E., Noori H.R., Saidi A.R.: The size-dependent vibration analysis of microplates based on a modified couple stress theory. Physica E 43, 877–883 (2011)

    Article  Google Scholar 

  9. Mohammadi M., Ghayour M., Farajpour. A.: Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Compos. Part B Eng. 45, 32–42 (2013)

    Article  Google Scholar 

  10. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703-1470 (1983)

    Google Scholar 

  11. Sakhaee-Pour A.: Elastic buckling of single-layered graphene sheet. Comp. Mater. Sci. 45, 266–270 (2009)

    Article  Google Scholar 

  12. Pradhan S.C., Phadikar J.K.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 373, 1062–1069 (2009)

    Article  MATH  Google Scholar 

  13. Murmu T., Pradhan S.C.: Buckling of biaxially compressed orthotropic plates at small scales. Mech. Res. Commun. 36, 933–938 (2009)

    Article  MATH  Google Scholar 

  14. Pouresmaeeli S., Fazelzadeh S.A., Ghavanloo E.: Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic medium. Compos. Part B Eng. 43, 3384–3390 (2012)

    Article  Google Scholar 

  15. Satish N., Narendar S., Gopalakrishnan S.: Thermal vibration analysis of orthotropic nanoplates based on nonlocal continuum mechanics. Physica E 44, 1950–1962 (2012)

    Article  Google Scholar 

  16. Pouresmaeeli S., Ghavanloo E., Fazelzadeh S.A.: Vibration analysis of viscoelastic orthotropic nanoplates resting on viscoelastic medium. Compos. Struct. 96, 405–410 (2013)

    Article  Google Scholar 

  17. Pradhan S.C., Kumar A.: Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Comput. Mater. Sci. 50, 239–245 (2010)

    Article  Google Scholar 

  18. Pradhan S.C., Kumar A.: Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos. Struct. 93, 774–779 (2011)

    Article  Google Scholar 

  19. Farajpour A., Shahidi A.R., Mohammadi M., Mahzoon M.: Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos. Struct. 94, 1605–1615 (2012)

    Article  Google Scholar 

  20. Shahidi A.R., Anjomshoa A., Shahidi S.H., Kamrani M.: Fundamental size dependent natural frequencies of non-uniform orthotropic nano scaled plates using nonlocal variational principle and finite element method. Appl. Math. Model. 37, 7047–7061 (2013)

    Article  MathSciNet  Google Scholar 

  21. Analooei H.R., Azhari M., Heidarpour A.: Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method. Appl. Math. Model. 37, 6703–6717 (2013)

    Article  MathSciNet  Google Scholar 

  22. Tsiatas G.C., Yiotis A.J.: A microstructure-dependent orthotropic plate model based on a modified couple stress theory. In: Sapountzakis, E. (ed.) Recent Developments in Boundary Element Methods, A Volume to Honour Professor John T. Katsikadelis, WIT Press, Southampton (2010)

    Google Scholar 

  23. Yang F., Chong A.C.M, Lam D.C.C, Tong P.: Couple stress based strain gradient theory of elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  24. Park S.K., Gao X.-L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Malekzadeh P., Setoodeh A.R., Alibeygi Beni A.: Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos. Struct. 93, 1631–1639 (2011)

    Article  Google Scholar 

  26. Beni Alibeygi A., Malekzadeh P.: Nonlocal free vibration of orthotropic non prismatic skew nanoplates. Compos. Struct. 94, 3215–3222 (2012)

    Article  Google Scholar 

  27. Antoine A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    Article  Google Scholar 

  28. Chen W., Li X.: A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. Arch. Appl. Mech. 84, 323–341 (2014)

    Article  MATH  Google Scholar 

  29. Koiter W.T.: Couple stresses in the theory of elasticity, I and II. Proc. K Ned. Akad. Wet. (B) 67, 17–44 (1964)

    MATH  Google Scholar 

  30. Santos J.V.A.D., Reddy J.N.: Vibration of Timoshenko beams using non-classical elasticity theories. Shock. Vib. 19, 251–256 (2012)

    Article  Google Scholar 

  31. Katsikadelis J.T.: The boundary element method for plate analysis. 1st edn. Academic Press, Oxford (2014)

    Google Scholar 

  32. Rand O., Rovenski V.: Analytical Methods in Anisotropic Elasticity: with symbolic computational tools. Birkhäuser, Boston (2004)

    Google Scholar 

  33. Reddy J.N.: Energy principles and variational methods in applied mechanics, 2nd edn. Wiley, New York (2002)

    Google Scholar 

  34. Babouskos N., Katsikadelis J.T.: Flutter instability of damped plates under combined conservative and nonconservative loads. Arch. Appl. Mech. 79, 541–556 (2009)

    Article  MATH  Google Scholar 

  35. Tsiatas G.C., Yiotis A.J.: A BEM-based meshless solution to buckling and vibration problems of orthotropic plates. Eng. Anal. Bound. Elem. 37, 579–584 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Irschik H.: A boundary-integral equation method for bending of orthotropic plates. Int. J. Solids Struct. 37, 245–255 (1984)

    Article  Google Scholar 

  37. Shi G., Bezine G.: A general boundary integral formulation for the anisotropic plate bending problems. J. Compos. Mater. 22, 694–716 (1988)

    Article  Google Scholar 

  38. Albuquerque E.L., Sollero P., Venturini W.S., Aliabadi M.H.: Boundary element analysis of anisotropic Kirchhoff plates. Int. J. Solid. Struct. 43, 4029–4046 (2006)

    Article  MATH  Google Scholar 

  39. Katsikadelis J.T.: The analog equation method-a powerful BEM-based solution technique for solving linear and nonlinear engineering problems. In: Brebbia, C.A. (ed.) Boundary elements VI, CLM publications, Southampton (1994)

    Google Scholar 

  40. Katsikadelis J.T, Armenakas A.E.: A new boundary equation solution to the plate problem. J. Appl. Mech. ASME 56, 364–374 (1989)

    Article  MATH  Google Scholar 

  41. Nerantzaki M.S., Katsikadelis J.T.: An analog equation solution to dynamic analysis of plates with variable thickness. Eng. Anal. Bound. Elem. 17, 145–152 (1996)

    Article  Google Scholar 

  42. Nerantzaki M.S., Katsikadelis J.T.: Buckling of plates with variable thickness—an analog equation solution. Eng. Anal. Bound. Elem. 18, 149–154 (1996)

    Article  Google Scholar 

  43. Sakata T., Hayashi T.: Natural frequencies of clamped orthotropic skew plates. J. Sound. Vib. 81, 287–298 (1982)

    Article  MATH  Google Scholar 

  44. Rossi R.E., Bambill D.V., Laura P.A.A.: Vibrations of a rectangular orthotropic plate with a free edge: a comparison of analytical and numerical results. Ocean Eng. 25, 521–527 (1998)

    Article  Google Scholar 

  45. Hadid H.A., Bashir M.H.M.: Analysis of orthotropic thin plate using spline-integral method. Comput. Struct. 37, 423–428 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Tsiatas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsiatas, G.C., Yiotis, A.J. Size effect on the static, dynamic and buckling analysis of orthotropic Kirchhoff-type skew micro-plates based on a modified couple stress theory: comparison with the nonlocal elasticity theory. Acta Mech 226, 1267–1281 (2015). https://doi.org/10.1007/s00707-014-1249-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1249-3

Keywords

Navigation