Skip to main content
Log in

Stress waves and dynamic buckling of functionally graded cylindrical shells under combined axial impact and thermal load

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article is mainly focused on accurate solutions for axial impact buckling of functionally graded cylindrical shells in a heated environment. A new analytical methodology is developed, and a rigorous solving procedure is conducted to guarantee the accuracy of the obtained results. Various aspects related to boundary conditions, geometric parameters, material properties and temperature variations are investigated systematically. The numerical results reveal that in-plane boundary conditions have an obvious influence on the shell. If the reflection of stress waves occurs, critical stresses should further decrease with the interaction of incident and reflected waves. The ability of FGCSs in resisting buckling failure can be improved by controlling the material exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suresh S., Mortensen A.: Fundamentals of Functionally Graded Materials. IOM Communications, London (1998)

    Google Scholar 

  2. Shen H.S.: Functionally Graded Materials Nonlinear Analysis of Plates and Shells. CRC Press, Raton, Boca (2009)

    Book  Google Scholar 

  3. Weng G.J.: Effective bulk moduli of two functionally graded composites. Acta. Mech. 166, 57–67 (2003)

    Article  MATH  Google Scholar 

  4. Noda N.: Thermal stresses in materials with temperature-dependent properties. Appl. Mech. Rev. 44, 83–97 (1991)

    Article  Google Scholar 

  5. Tanigawa Y.: Some basic thermoelastic problems for non-homogeneous structural materials. Appl. Mech. Rev. 48, 287–300 (1995)

    Article  Google Scholar 

  6. Sofiyev A.H.: Thermoelastic stability of functionally graded truncated conical shells. J. Compos. Struct. 77(1), 56–65 (2007)

    Article  Google Scholar 

  7. Naj R., Boroujerdy S.M., Eslami M.R.: Thermal and mechanical instability of functionally graded truncated conical shells. Thin. Wall. Struct. 46, 65–78 (2008)

    Article  Google Scholar 

  8. Shahsiah R., Eslami M.R.: Functionally graded cylindrical shell thermal instability based on improved Donnell equations. AIAA J. 41(9), 1819–1826 (2003)

    Article  Google Scholar 

  9. Wu L.H., Jiang Z.Q., Liu J.: Thermo-elastic stability of functionally graded cylindrical shells. Compos. Struct. 70, 60–68 (2005)

    Article  Google Scholar 

  10. Khazaeinejad P., Najafizadeh M.M., Jenabi J., Isvandzibaei M.R.: On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression. J. Press. Vess. Tech. ASME 132(6), 064501–064514 (2010)

    Article  Google Scholar 

  11. Touloukian Y.S.: Thermophysical Properties of High Temperature Solid Materials. Macmillan, New York (1967)

    Google Scholar 

  12. Kadoli R., Ganesan N.: Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition. J. Sound. Vib. 289, 450–480 (2006)

    Article  Google Scholar 

  13. Huang H.W., Han Q.: Buckling of imperfect functionally graded cylindrical shells under axial compression. Eur. J. Mech. A/Solid. 27, 1026–1036 (2008)

    Article  MATH  Google Scholar 

  14. Shen H.S.: Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Compos. Sci. Technol. 62, 977–987 (2002)

    Article  Google Scholar 

  15. Huang H.W., Han Q.: Nonlinear elastic buckling and postbuckling of axially compressed functionally graded cylindrical shells. Int. J. Mech. Sci. 51, 500–507 (2009)

    Article  Google Scholar 

  16. Matsunaga H.: Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory. Compos. Struct. 88, 519–531 (2009)

    Article  Google Scholar 

  17. Reiter T., Dvorak G.J.: Micromechanical models for graded composite Materials: II. Thermomechanical loading. J. Mech. Phys. Solids 46(9), 1655–1673 (1998)

    Article  MATH  Google Scholar 

  18. Lee D.S.: Nonlinear dynamic buckling of orthotropic cylindrical shells subjected to rapidly applied loads. J. Eng. Math. 38, 141–154 (2000)

    Article  MATH  Google Scholar 

  19. Kubiak T.: Dynamic buckling of thin-walled composite plates with varying widthwise material properties. Int. J. Solids. Struct. 42, 5555–5567 (2005)

    Article  MATH  Google Scholar 

  20. Sofiyev A.H.: On the buckling of composite conical shells resting on the Winkler-Pasternak elastic foundations under combined axial compression and external pressure. Compos. Struct. 113, 208–215 (2014)

    Article  Google Scholar 

  21. Sofiyev A.H.: Dynamic buckling of functionally graded cylindrical thin shells under non-periodic impulsive loading. Acta. Mech. 165(3–4), 151–163 (2003)

    Article  MATH  Google Scholar 

  22. Sofiyev A.H., Schnack E.: The stability of functionally graded cylindrical shells under linearly increasing dynamic torsional loading. Eng. Struct. 26, 1321–1331 (2004)

    Article  Google Scholar 

  23. Sofiyev A.H.: On the dynamic buckling of truncated conical shells with functionally graded coatings subject to a time dependent axial load in the large deformation. Compos. Part. B-Eng. 58, 524–533 (2014)

    Article  Google Scholar 

  24. Zhang J., Li S.: Dynamic buckling of FGM truncated conical shells subjected to non-uniform normal impact load. Compos. Struct. 92, 2979–2983 (2010)

    Article  Google Scholar 

  25. Shariyat M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells, under combined axial compression and external pressure. Int. J. Solids. Struct. 45, 2598–2612 (2008)

    Article  MATH  Google Scholar 

  26. Shariyat M.: Dynamic buckling of suddenly loaded imperfect hybrid FGM cylindrical shells with temperature-dependent material properties under thermo-electro-mechanical loads. Int. J. Mech. Sci. 50, 1561–1571 (2008)

    Article  Google Scholar 

  27. Coppa, A.P.: On the mechanism of buckling of a circular cylindrical shell under longitudinal impact. General electric report R60SD494. Presented at tenth international congress of applied mechanics (1960)

  28. Lindberg H.E., Herbert R.E.: Dynamic buckling of a thin cylindrical shell under axial impact. J. Appl. Mech. 33(1), 105–112 (1966)

    Article  MATH  Google Scholar 

  29. Zhong W.X.: Duality System in Applied Mechanics and Optimal Control. Kluwer Academic, Boston (2004)

    MATH  Google Scholar 

  30. Yao W.A., Zhong W.X., Lim C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  31. Lim C.W., Xu X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63, 050802-110 (2010)

    Article  Google Scholar 

  32. Xu X.S., Ma Y., Lim C.W., Chu H.J.: Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system. Int. J. Solids. Struct. 43, 3905–3919 (2006)

    Article  MATH  Google Scholar 

  33. Reddy J.N., Chin C.D.: Thermal mechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21, 593–626 (1998)

    Article  Google Scholar 

  34. Han Q., Ma H.W., Zhang S.Y., Yang G.T., Wu J.K.: The dynamic buckling problem caused by propagation of stress wave in elastic cylindrical shells under impact torque. Appl. Math. Mech. (Eng. Edn.) 17(1), 1–8 (1996)

    Article  MATH  Google Scholar 

  35. Yamaki N.: Elastic Stability of Circular Cylindrical Shells. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiabin Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Xu, X. & Lim, C.W. Stress waves and dynamic buckling of functionally graded cylindrical shells under combined axial impact and thermal load. Acta Mech 226, 1323–1339 (2015). https://doi.org/10.1007/s00707-014-1244-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1244-8

Keywords

Navigation