Skip to main content
Log in

CVBEM solution for De Saint-Venant orthotropic beams under coupled bending and torsion

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The aim of this paper is to provide a solution for the coupled flexure–torsion De Saint Venant problem for orthotropic beams taking full advantage of the complex variable boundary element method (CVBEM) properly extended using a complex potential function whose real and imaginary parts are related to the shear stress components, the orthotropic ratio and the Poisson coefficients. The proposed method returns the complete stress field and the unitary twist rotation of the cross section at once by performing only line integrals. Numerical applications have been reported to show the validity and the efficiency of the proposed modified CVBEM to handle shear stress problems in the presence of orthotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 4th edn. Dover Publications, New York (1926)

    Google Scholar 

  2. Sokolnikoff I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  3. Timoshenko S.P., Goodier J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  4. Lekhnitskii S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow (1981)

    MATH  Google Scholar 

  5. Tolf G.: St. Venant bending of an orthotropic beam. Compos. Struct. 4, 1–14 (1985)

    Article  Google Scholar 

  6. Kosmatka J.B., Dong S.B.: Saint-Venant solutions for prismatic anisotropic beams. Int. J. Solids Struct. 28, 917–938 (1991)

    Article  MATH  Google Scholar 

  7. Kosmatka J.B.: Flexure–torsion behavior of prismatic beams, part I: section properties via power series. AIAA J. 31, 170–179 (1993)

    Article  MATH  Google Scholar 

  8. Chou S.I.: Determination of centers of flexure using the boundary element method. Eng. Anal. Bound. Elem. 12, 321–324 (1993)

    Article  Google Scholar 

  9. Mokos V.G., Sapountzakis E.J.: A BEM solution to transverse shear loading of beams. Comput. Mech. 36, 384–397 (2005)

    Article  MATH  Google Scholar 

  10. Sapountzakis E.J., Mokos V.G.: A BEM solution to transverse shear loading of composite beams. Int. J. Solids Struct. 42, 3261–3287 (2005)

    Article  MATH  Google Scholar 

  11. Sapountzakis E.J., Protonotariou V.M.: A displacement solution for transverse shear loading of beams using the boundary element method. Comput. Struct. 86, 771–779 (2008)

    Article  Google Scholar 

  12. Gaspari D., Aristodemo M.: Torsion and flexure analysis of orthotropic beams by a boundary element model. Eng. Anal. Bound. Elem. 29, 850–858 (2005)

    Article  MATH  Google Scholar 

  13. Lacarbonara W., Paolone A.: On solution strategies to Saint-Venant problem. J. Comput. Appl. Math. 206, 473–497 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff Ltd., Groningen (1953)

  15. England, A.H.: Complex Variable Methods in Elasticity. Wiley-Interscience, New York (1971)

  16. Hromadka, T.V. II: The Complex Variable Boundary Element Method. Springer, Berlin (1984)

  17. Hromadka, T.V. II, Whitley, R.J.: Advances in the Complex Variable Boundary Element Method. Springer, London Limited (1998)

  18. Whitley, R.J., Hromadka II, T.V.: Theoretical developments in the complex variable element method. Eng. Anal. Bound. Elem. 30, 1020–1024 (2006)

  19. Hromadka, T.V. II, Guymon, L.G.: Complex polynomial approximation of the Laplace equation. J. Hydraul. Eng. 110, 329–339 (1984)

  20. Poler, A.C., Bohannon, A.W., Schowalter, S.J., Hromadka, T.V. II: Using the complex polynomial method with mathematica to model problems involving the Laplace and Poisson equations Published online in Wiley Interscience (www.interscience.wiley.com) (2008) doi:10.1002/num.20365

  21. Di Paola M., Pirrotta A., Santoro R.: Line element-less method (LEM) for beam torsion solution (truly no-mesh method). Acta Mech. 195, 349–363 (2008)

    Article  MATH  Google Scholar 

  22. Di Paola M., Pirrotta A., Santoro R.: De Saint-Venant flexure–torsion problem handled by line element-less method (LEM). Acta Mech. 217, 101–118 (2011)

    Article  MATH  Google Scholar 

  23. Pirrotta A.: LEM for twisted re-entrant angle sections. Comput. Struct. 133, 149–155 (2014)

    Article  Google Scholar 

  24. Barone G., Pirrotta A., Santoro R.: Comparison among three boundary element methods for torsion problems: CPM, CVBEM, LEM. Eng. Anal. Bound. Elem. 35, 895–907 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Aleynikov S.M., Stromov A.V.: Comparison of complex methods for numerical solutions of boundary problems of the Laplace equation. Eng. Anal. Bound. Elem. 28, 615–622 (2004)

    Article  Google Scholar 

  26. Dumir P.C., Kumar R.: Complex variable boundary element method for torsion of anisotropic bars. Appl. Math. Model. 17, 80–88 (1993)

    Article  MATH  Google Scholar 

  27. Santoro R.: The line element-less method analysis of orthotropic beam for the De Saint Venant torsion problem. Int. J. Mech. Sci. 52, 43–55 (2010)

    Article  Google Scholar 

  28. Santoro R.: Solution of De Saint Venant flexure–torsion problem for orthotropic beam via LEM (line element-less method). Eur. J. Mech. A Solids 30, 924–939 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Barone, G., Pirrotta, A.: CVBEM application to a novel potential function providing stress field and twist rotation at once. J. Eng. Mech. 9, 1290–1293

  30. Barone G., Pirrotta A.: CVBEM for solving De Saint-Venant solid under shear forces. Eng. Anal. Bound. Elem. 37, 197–204 (2013)

    Article  MathSciNet  Google Scholar 

  31. Barone G., Lo Iacono F., Navarra G.: Complex potential by hydrodynamic analogy for the determination of flexure–torsion induced stresses in de Saint Venant beams with boundary singularities. Eng. Anal. Bound. Elem. 37, 1632–1641 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pirrotta A.: Complex potential function in elasticity theory: shear and torsion solution through line integrals. Acta Mech. 223, 1251–1259 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Santoro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barone, G., Pirrotta, A. & Santoro, R. CVBEM solution for De Saint-Venant orthotropic beams under coupled bending and torsion. Acta Mech 226, 783–796 (2015). https://doi.org/10.1007/s00707-014-1233-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1233-y

Keywords

Navigation