Skip to main content
Log in

Dynamic crack growth modeling technique based upon the SGBEM in the Laplace domain

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a new dynamic crack growth prediction tool based upon the symmetric Galerkin boundary element method (SGBEM) in the Laplace domain, combined with the maximum hoop stress (MHS) criterion. The fast Laplace inverse transform developed by Durbin is employed to obtain time-domain solutions of the stress intensity factors required by the MHS criterion. In this work, the proposed Laplace SGBEM tool is used to predict crack trajectories in homogeneous and non-homogeneous isotropic brittle materials under dynamic loading conditions. The effect of the elastic constant mismatches is investigated for the influence of crack–inclusion interaction on crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliabadi M.: The Boundary Element Method, Volume 2, Applications in Solids and Structures. Wiley, England (2002)

    Google Scholar 

  2. Banks-Sills L.: Application of the finite element method to linear elastic fracture mechanics. Appl. Mech. Rev. 44, 447–461 (1991)

    Article  Google Scholar 

  3. Blandford G.E., Ingraffea A.R., Liggett J.A.: Two-dimensional stress intensity factor computations using the boundary element method. Int. J. Numer. Methods Eng. 17(3), 387–404 (1981)

    Article  MATH  Google Scholar 

  4. Bonnet M.: Boundary Integral Equation Methods for Solids and Fluids. Wiley, England (1995)

    Google Scholar 

  5. Bonnet M., Maier G., Polizzotto C: On symmetric Galerkin boundary element method. ASME Appl. Mech. Rev. 51, 669–704 (1998)

    Article  Google Scholar 

  6. Bush M.: The interaction between a crack and a particle cluster. Int. J. Fract. 88(3), 215–232 (1997)

    Article  Google Scholar 

  7. Chirino F., Chirino F., Chirino F.: Dynamic analysis of cracks using boundary element method. Eng. Fract. Mech. 34, 1051–1061 (1989)

    Article  Google Scholar 

  8. Durbin F.: Numerical inversion of laplace transforms: an efficient improvement to dubner and abate’s method. Comput. J. 17, 371–376 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ebrahimi S., Phan A.-V.: Dynamic analysis of cracks using the (SGBEM) for elastodynamics in the laplace-space frequency domain. Eng. Anal. Bound. Elem. 37(11), 1378–1391 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdogan F., Sih G.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519 (1963)

    Article  Google Scholar 

  11. Freund L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  12. Gray L.: Evaluation of hypersingular integrals in the boundary element method. Math. Comput. Model. 15, 165–174 (1991)

    Article  MATH  Google Scholar 

  13. Gray L., Paulino G.: Symmetric galerkin boundary integral formulation for interface and multi-zone problems. Int. J. Numer. Methods Eng. 40, 3085–3101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gray L., Paulino G.: Crack tip interpolation, revisited. SIAM J. Appl. Math. 58, 428–455 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gray L., Phan A.-V., Paulino G. H., Kaplan T.: Improved quarter-point crack tip element. Eng. Fract. Mech. 70(2), 269–283 (2003)

    Article  Google Scholar 

  16. Huang, Y., Lei, J., Yang, Q.: Crack propagation in matrix with inclusions by bem. In: Mechatronics and Automation (ICMA), 2011 International Conference on (2011), IEEE, pp. 2270–2275

  17. Ingraffea, A., Blandford, G., Ligget, J.: Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. In: Proceedings of Fracture Mechanics: Fourteenth Symposium, ASTM STP (1983), vol. 791, pp. 407–411

  18. Kitey R., Phan A.-V., Tippur H., Kaplan T.: Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int. J. Fract. 141(1–2), 11–25 (2006)

    Article  MATH  Google Scholar 

  19. Knight M., Wrobel L., Henshall J., De Lacerda L.: A study of the interaction between a propagating crack and an uncoated coated elastic inclusion using the be technique. Int. J. Fract. 141(1–2), 47–61 (2002)

    Article  Google Scholar 

  20. Krysl P., Belytschko T.: The element free Galerkin method for dynamic propagation of arbitrary 3D cracks. Int. J. Numer. Methods Eng. 44(6), 767–800 (1999)

    Article  MATH  Google Scholar 

  21. Lei J., Wang Y.-S., Gross D.: Analysis of dynamic interaction between an inclusion and a nearby moving crack by BEM. Eng. Anal. Bound. Elem. 29(8), 802–813 (2005)

    Article  MATH  Google Scholar 

  22. Lei J., Wang Y.-S., Huang Y., Yang Q., Zhang C.: Dynamic crack propagation in matrix involving inclusions by a time-domain {BEM}. Eng. Anal. Bound. Elem. 36(5), 651–657 (2012)

    Article  MathSciNet  Google Scholar 

  23. Lei J., Yang Q., Wang Y.-S., Zhang C.: An investigation of dynamic interaction between multiple cracks and inclusions by TDBEM. Compos. Sci. Technol. 69(7), 1279–1285 (2009)

    Article  Google Scholar 

  24. Lei J., Zhang C., Yang Q., Wang Y.-S.: Dynamic effects of inclusions and microcracks on a main crack. Int. J. Fract. 164(2), 271–283 (2010)

    Article  MATH  Google Scholar 

  25. Phan A.-V., Gray L. J., Kaplan T.: On some benchmark results for the interaction of a crack with a circular inclusion. Trans. ASME J. Appl. Mech. 74, 1282–1284 (2007)

    Article  Google Scholar 

  26. Phan A.-V., Guduru V., Salvadori A., Gray L.: Frequency domain analysis by the exponential window method and SGBEM for elastodynamics. Comput. Mech. 48(5), 615–630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schädle A., López-Fernández M., Lubich C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Seelig T., Gross D.: Analysis of dynamic crack propagation using a time-domain boundary integral equation method. Int. J. Solids Struct. 34(17), 2087–2103 (1997)

    Article  MATH  Google Scholar 

  29. Sutradhar A., Paulino G., Gray L.J.: Symmetric Galerkin Boundary Element Method. Springer, Berlin (2008)

    MATH  Google Scholar 

  30. Wang C., Libardi W., Baldo J.: Analysis of crack extension paths and toughening in a two phase brittle particulate composite by the boundary element method. Int. J. Fract. 94(2), 177–188 (1998)

    Article  Google Scholar 

  31. Williams, M.L.: On the stress distribution at the base of a stationary crack. ASME J. Appl. Mech. 24, 111–114 (1957)

  32. Williams R., Phan A.-V., Tippur H., Kaplan T., Gray L.: SGBEM analysis of crack–particle(s) interactions due to elastic constants mismatch. Eng. Fract. Mech. 74(3), 314–331 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-V. Phan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, S., Phan, AV. Dynamic crack growth modeling technique based upon the SGBEM in the Laplace domain. Acta Mech 226, 769–781 (2015). https://doi.org/10.1007/s00707-014-1224-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1224-z

Keywords

Navigation