Skip to main content
Log in

Circular inclusion near a circular void: determination of elastic antiplane shear fields and configurational forces

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The stress and displacement fields are determined inside and outside a circular inclusion located in the vicinity of a circular void in an infinite elastic solid, within a circular cylinder, or near the free surface of a half-space, in the case when the inclusion is characterized by a uniform eigenstrain of the antiplane shear type. The fields are obtained as the sum of their infinite-medium stress fields and the calculated auxiliary fields. It is shown that the fields outside the inclusion follow directly from the extended Milne-Thomson circle theorem, but not the fields inside the inclusion. The overall fields are interpreted as the superposition of the infinite-medium fields from the actual and the image inclusion of the appropriate location, radius, and eigenstrains. The stress amplification is evaluated for the inclusion approaching the boundary of the void, cylinder, or half-space. The configurational forces are then evaluated, associated with a relative translation of the void and inclusion, or the expansion of the void or inclusion. The J and M integrals along the boundary of the void are evaluated without using the solution of the entire boundary-value problem, but only the stress field for an inclusion in an unvoided infinite medium. This is accomplished by incorporating the result that the circumferential shear stress along the boundary of a traction-free circular void in an infinite isotropic solid under antiplane shear is twice the circumferential shear stress along the corresponding circle in an infinite solid without a void, under the same loading conditions. The energy release rate associated with a self-similar expansion of the inclusion is calculated from the determined elastic field around the inclusion and from the evaluated total strain energy of the system. The configurational forces on the inclusion in a circular cylinder and near the free surface of a half-space are also determined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang H.C., Chou Y.T.: Antiplane strain problems of an elliptical inclusion in an anisotropic medium. J. Appl. Mech. 44, 437–441 (1977)

    Article  MATH  Google Scholar 

  2. Masumura R.A., Chou Y.T.: Antiplane eigenstrain problem of an elliptic inclusion in an anisotropic half space. J. Appl. Mech. 49, 52–54 (1982)

    Article  MATH  Google Scholar 

  3. Zhang H.T., Chou Y.T.: Antiplane eigenstrain problem of an elliptic inclusion in a two-phase anisotropic medium. J. Appl. Mech. 52, 87–90 (1985)

    Article  MATH  Google Scholar 

  4. Ru C.Q.: Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta Mech. 160, 219–234 (2003)

    Article  MATH  Google Scholar 

  5. Wang R.: Antiplane eigenstrain problem of a circular inclusion in nonlocal elasticity. Acta Mech. 85, 131–136 (1990)

    Article  Google Scholar 

  6. Lubarda V.A.: Circular inclusions in anti-plane strain couple stress elasticity. Int. J. Solids Struct. 40, 3827–3851 (2003)

    Article  MATH  Google Scholar 

  7. Haftbaradaran H., Shodja H.M.: Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. Int. J. Solids Struct. 46, 2978–2987 (2009)

    Article  MATH  Google Scholar 

  8. Pak Y.E.: Circular inclusion problem in antiplane piezoelectricity. Int. J. Solids Struct. 29, 2403–2419 (1992)

    Article  MATH  Google Scholar 

  9. Honein T., Honein B.V., Honein E., Herrmann G.: On the interaction of two piezoelectric fibers embedded in an intelligent material. J. Intell. Mater. Syst. Struct. 6, 229–236 (1995)

    Article  Google Scholar 

  10. Xiao Z.M., Yan J., Chen B.J.: Electro-elastic stress analysis for a screw dislocation interacting with a coated inclusion in piezoelectric solid. Acta Mech. 172, 237–249 (2004)

    Article  MATH  Google Scholar 

  11. Wang X., Pan E., Roy A.K.: A functionally graded plane with a circular inclusion under uniform antiplane eigenstrain. J. Appl. Mech. 75, 014501-1–014501-4 (2008)

    Google Scholar 

  12. Yavari, A., Goriely, A.: Nonlinear elastic inclusions in isotropic solids. Proc. R. Soc. Lond. A 469, Art. 20130415 (2013)

  13. Honein E., Honein T., Herrmann G.: On two circular inclusions in harmonic problems. Q. Appl. Math. 50, 479–499 (1992)

    MATH  MathSciNet  Google Scholar 

  14. Honein E., Honein T., Herrmann G.: Further aspects on the elastic field for two circular inclusions in antiplane elastostatics. J. Appl. Mech. 59, 774–779 (1992)

    Article  MATH  Google Scholar 

  15. Ru C.Q., Schiavone P.: A circular inclusion with circumferentially inhomogeneous interface in antiplane shear. Proc. R. Soc. Lond. A 453, 2551–2572 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang X., Shen Y.-P.: Two circular inclusions with inhomogeneous interfaces interacting with a circular Eshelby inclusion in anti-plane shear. Acta Mech. 158, 67–84 (2002)

    Article  MATH  Google Scholar 

  17. Friedel, J.: Dislocations. Pergamon Press, Reading, MA (1964)

  18. Dundurs J., Mura T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177–189 (1964)

    Article  MathSciNet  Google Scholar 

  19. Dundurs, J.: Elastic interactions of dislocations with inhomogeneities. In: Mura, T. (ed.) Mathematical Theory of Dislocations, pp. 70–115. ASME, New York (1969)

  20. Eshelby, J.D.: Boundary problems. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 1, pp. 167–221. North Holland, Amsterdam (1979)

  21. Lubarda V.A., Schneider M.S., Kalantar D.H., Remington B.R., Meyers M.A.: Void growth by dislocation emission. Acta Mater. 52, 1397–1408 (2004)

    Article  Google Scholar 

  22. Meyers M.A., Traiviratana S., Lubarda V.A., Bringa E.M., Benson D.J.: The role of dislocations in the growth of nanosized voids in ductile failure of metals. J. Mater. 61, 35–41 (2009)

    Google Scholar 

  23. Rudd R.E.: Void growth in bcc metals simulated with molecular dynamics using the Fennis–Sinclair potential. Philos. Mag. 89, 3133–3161 (2009)

    Article  Google Scholar 

  24. Lubarda V.A.: Image force on a straight dislocation emitted from a cylindrical void. Int. J. Solids Struct. 48, 648–660 (2011)

    Article  MATH  Google Scholar 

  25. Lubarda V.A.: Emission of dislocations from nanovoids under combined loading. Int. J. Plast. 27, 181–200 (2011)

    Article  Google Scholar 

  26. Gong S.X.: A unified treatment of the elastic elliptical inclusion under antiplane shear. Arch. Appl. Mech. 65, 55–64 (1995)

    MATH  Google Scholar 

  27. Chen Y.Z.: Image method for curved crack problem in antiplane elasticity. Int. J. Fract. 48, R75–R78 (1991)

    Article  Google Scholar 

  28. Zhou K., Hoh H.J., Wang X., Keer L.M., Pang J.H.L., Song B., Wang Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  29. Milne-Thomson L.M.: Hydrodynamical images. Proc. Camb. Philos. Soc. 36, 246–247 (1940)

    Article  MathSciNet  Google Scholar 

  30. Milne-Thomson L.M.: Theoretical Hydrodynamics. Macmillan Press, London (1968)

    MATH  Google Scholar 

  31. Smith E.: The interaction between dislocations and inhomogeneities – I. Int. J. Eng. Sci. 6, 129–143 (1968)

    Article  Google Scholar 

  32. Lin, W.-W., Honein, T., Herrmann, G.: A novel method of stress analysis of elastic materials with damage zones. In: Boehler, J.P. (ed.), Yielding, Damage, and Failure of Anisotropic Solids, EGF Publication 5, pp. 609–615. Mechanical Engineering Publications, London (1990)

  33. Hirth J.P., Lothe J.: Theory of Dislocations. Wiley, New York (1982)

    Google Scholar 

  34. Mura T.: Micromechanics of Defects in Solids. Kluwer Academic Publishers, Dordrecht (1987)

    Book  Google Scholar 

  35. Barber J.R.: Elasticity–Solid Mechanics and its Applications. Springer, New York (2010)

    Google Scholar 

  36. Eshelby, J.D.: The calculation of energy release rates. In: Sig, G.C. (ed.) Prospects of Fracture Mechanics, pp. 69–84. Noordhoff, Leyden, The Netherlands (1975)

  37. Freund L.B.: Stress intensity factor calculations based on a conservation integral. Int. J. Solids Struct. 14, 241–250 (1978)

    Article  Google Scholar 

  38. Rice, J.R.: Conserved integrals and energetic forces. In: Bilby, B.A., Miller, K.J., Willis, J.R. (eds.) Fundamentals of Deformation and Fracture, pp. 33–56. Cambridge University Press, Cambridge (1985)

  39. Kienzler R., Kordisch H.: Calculation of J 1 and J 2 using the L and M integrals. Int. J. Fract. 43, 213–225 (1990)

    Article  Google Scholar 

  40. Müller W.H., Kemmer G.: Applications of the concept of J-integrals for calculation of generalized forces. Acta Mech. 129, 1–12 (1998)

    Article  MATH  Google Scholar 

  41. Honein E., Honein T., Herrmann G.: Energetics of two circular inclusions in anti-plane elastostatics. Int. J. Solids Struct. 37, 3667–3679 (2000)

    Article  MATH  Google Scholar 

  42. Lubarda V.A.: On the non-uniqueness of solution for screw dislocation in multiply connected regions. J. Elast. 52, 289–292 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lubarda V.A., Markenscoff X.: The stress field for a screw dislocation near cavities and straight boundaries. Mater. Sci. Eng. A 349, 327–334 (2003)

    Article  Google Scholar 

  44. Kienzler R., Zhuping D.: On the distribution of hoop stresses around circular holes in elastic sheets. J. Appl. Mech. 54, 110–114 (1987)

    Article  MATH  Google Scholar 

  45. Eshelby J.D.: The continuum theory of lattice defects. Solid State Phys. 3, 79–144 (1956)

    Google Scholar 

  46. Knowles J.K., Sternberg E.: On a class of conservation laws in linearized and finite elastostatics. Arch. Ration. Mech. Anal. 44, 187–211 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  47. Budiansky B., Rice J.R.: Conservation laws and energy-release rates. J. Appl. Mech. 40, 201–203 (1973)

    Article  MATH  Google Scholar 

  48. Gavazza S.D.: Forces on pure inclusions and Somigliana dislocations. Scr. Metall. 11, 977–981 (1977)

    Article  Google Scholar 

  49. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff, Groningen (1953)

  50. Gradshteyn I.S., Ruzhik I.W.: Tables of Integrals, Sums and Products (corrected and enlarged edition). Academic Press, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlado A. Lubarda.

Additional information

Dedicated to the memory of Professor George Herrmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubarda, V.A. Circular inclusion near a circular void: determination of elastic antiplane shear fields and configurational forces. Acta Mech 226, 643–664 (2015). https://doi.org/10.1007/s00707-014-1219-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1219-9

Keywords

Navigation