Skip to main content
Log in

Thermoelastic response in a symmetric spherical shell

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is concerned with the determination of thermoelastic stresses, strain and conductive temperature in a spherically symmetric spherical shell. The two-temperature three-phase-lag thermoelastic model (2T3P) and two-temperature Green–Naghdi model III (2TGNIII) are combined into a unified formulation. There is no temperature at the outer boundary, and thermal load is applied at the inner boundary. The basic equations have been written in the form of a vector–matrix differential equation in the Laplace transform domain which is then solved by the state-space approach. The numerical inversion of the transform is carried out using Fourier series expansion techniques. Because of the short duration of the second sound effects, small time approximations of the solutions are studied. The physical quantities have been computed numerically and presented graphically in a number of figures. A complete and comprehensive analysis of the results has been presented for the 2T3P and the 2TGNIII models. These results have also been compared with those of the one-temperature three-phase-lag thermoelastic model (1T3P) and one-temperature Green–Naghdi model III (1TGNIII).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman, C.C., Bertman, B., Fairbank, H.A., Guyer, R.A.: Second sound in solid helium. Phys. Rev. Lett. 16, 789–309 (1967)

  2. Ackerman C.C., Guyer R.A.: Temperature pulses in dielectric solids. Ann. Phys. 50, 128–185 (1968)

    Article  Google Scholar 

  3. Ackerman C.C., Overton W.C.: Second sound in solid helium-3. Phys. Rev. Lett. 22, 764–766 (1969)

    Article  Google Scholar 

  4. Von Gutfeld R.J., Nethercot A.H.: Temperature dependence of heat pulse propagation in sapphire. Phys. Rev. Lett. 17, 764–766 (1966)

    Article  Google Scholar 

  5. Guyer R.A., Krumhansi J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766–778 (1966)

    Article  Google Scholar 

  6. Taylor B., Marris H.J., Elbaum C.: Phonon focusing in solids. Phys. Rev. Lett. 23, 416–419 (1969)

    Article  Google Scholar 

  7. Rogers S.J.: Transport of heat and approach to second sound in some isotropically pure Alkali-Halide crystals. Phys. Rev. B 3, 1440–1457 (1971)

    Article  Google Scholar 

  8. Jackson H.E., Walker C.T.: Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 3, 1428–1439 (1971)

    Article  Google Scholar 

  9. Jackson H.E., Walker C.T., McNelly T.F.: Second sound in NaF. Phys. Rev. Lett. 25, 26–28 (1970)

    Article  Google Scholar 

  10. Lord H., Shulman Y.A.: Generalized dynamical theory of thermo-elasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  11. Ignacak J.: Uniqueness in generalized thermoelasticity. J. Therm. Stress. 2, 171–175 (1979)

    Article  Google Scholar 

  12. Ignacak J.: A note on uniqueness in thermoelasticity with one relaxation time. J. Therm. Stress. 5, 257–263 (1982)

    Article  Google Scholar 

  13. Dhaliwal R.S., Sherief H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math 33, 1–8 (1980)

    Article  MathSciNet  Google Scholar 

  14. Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  15. Ignaczak J., Ostoja-starzeweski M.: Thermoelasticity with Finite Speed. Oxford University Press, New York (2009)

    Book  Google Scholar 

  16. Ghosh M.K., Kanoria M.: Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green Lindsay theory. Acta Mech. 207, 51–67 (2009)

    Article  MATH  Google Scholar 

  17. Ghosh M.K., Kanoria M.: Study of dynamic response in a functionally graded spherically isotropic hollow sphere with temperature dependent elastic parameters. J. Therm. Stress. 33, 459–484 (2010)

    Article  Google Scholar 

  18. Green A.E., Naghdi P.M.: A re-examination of the basic postulate of thermo-mechanics. Proc. R. Soc. Lond. 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Green A.E., Naghdi P.M.: An unbounded heat wave in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  20. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bagri A., Eslami M.R.: Generalized coupled thermoelasticity of disks based on Lord-Shulman model. J. Therm. Stress. 27, 691–704 (2004)

    Article  Google Scholar 

  22. Bagri A., Eslami M.R.: A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders. J. Therm. Stress. 30, 911–930 (2007)

    Article  Google Scholar 

  23. Bagri A., Eslami M.R.: Analysis of thermoelastic waves in functionally graded hollow spheres based on the Green-Lindsay theory. J. Therm. Stress. 30, 1175–1193 (2007)

    Article  Google Scholar 

  24. Kar A., Kanoria M.: Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc. Eur. J. Mech. A/Solids 26, 969–981 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kar A., Kanoria M.: Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole. Int. J. Solids Struct. 44, 2961–2971 (2007)

    Article  MATH  Google Scholar 

  26. Das N.C., Lahiri A.: Thermo-elastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium. Int. J. Pure Appl. Math. 31, 19–32 (2000)

    MATH  Google Scholar 

  27. Chandrasekharaiah D.S.: Thermoelastic plane waves without energy dissipation. Mech. Res. Commun. 23, 549–555 (1996)

    Article  MATH  Google Scholar 

  28. Chandrasekharaiah D.S.: A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J. Elast. 43, 279–283 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ghosh M.K., Kanoria M.: Generalized thermoelastic problem of a spherically isotropic elastic medium containing a spherical Cavity. J. Therm. Stress. 31, 969–981 (2008)

    Article  Google Scholar 

  30. Islam M., Mallik S.H., Kanoria M.: Dynamic response in two-dimensional transversely isotropic thick plate with spatially varying heat sources and body forces. J. Appl. Math. Mech. Engl. Ed. 32, 1315–1332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Roychoudhuri S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)

    Article  Google Scholar 

  32. Quintanilla R., Racke R.: A note on stability in three-phase-lag heat conduction. J. Heat Mass Transf. 51, 24–29 (2008)

    Article  MATH  Google Scholar 

  33. Quintanilla R., Racke R.: Spatial behaviour of solutions of the three-phase-lag heat equation. Appl. Math. Comput. 213, 153–162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kanoria M., Mallik S.H.: Generalized thermo-visco-elastic interaction due to periodically varying heat source with three-phase-lag effect. Eur. J. Mech. A/Solids 29, 695–703 (2010)

    Article  Google Scholar 

  35. Kar A., Kanoria M.: Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect. Eur. J. Mech. A/Solids 28, 757–767 (2009)

    Article  MATH  Google Scholar 

  36. Kar A., Kanoria M.: Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect. Appl. Math. Model. 33, 3287–3298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kar A., Kanoria M.: Analysis of Thermoelastic Response in a Fiber Reinforced thin Annular Disc with Three-Phase-Lag Effect. Eur. J. Pure Appl. Math. 4, 304–321 (2011)

    MathSciNet  Google Scholar 

  38. Islam M., Kanoria M.: Study of dynamical response in a transversely isotropic thick plate due to heat source. J. Therm. Stress. 34, 702–723 (2011)

    Article  Google Scholar 

  39. Banik, S., Kanoria, M.: Generalized thermoelastic interaction in a functionally graded isotropic unbounded medium due to varying heat source with three-phase-lag effect. Math. Mech. Solids. 18(3), 231–245 (2013). doi:10.1177/1081286511436191

  40. Gurtin M.E., Williams W.O.: On the Clausius-Duhem inequality. Z. Angew. Math. Phys. 7, 626–633 (1966)

    Article  Google Scholar 

  41. Gurtin M.E., Williams W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26, 83–117 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chen P.J., Gurtin M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  43. Chen P.J., Gurtin M.E., Williams W.O.: A note on non simple heat conduction. Z. Angew. Math. Phys. 19, 969–970 (1968)

    Article  Google Scholar 

  44. Chen P.J., Gurtin M.E., Williams W.O.: On the thermodynamics of Non-simple Elastic materials with two-temperatures. Z. Angew. Math. Phys. 20, 107–112 (1969)

    Article  MATH  Google Scholar 

  45. Warren W.E., Chen P.J.: Wave propagation in two temperatures theory of thermoelasticity. Acta Mech. 16, 83–117 (1973)

    Article  Google Scholar 

  46. Iesan D.: On the thermodynamics of non-simple elastic materials with two temperatures. J. Appl. Math. Phys. 21, 583–591 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  47. Quintanilla R.: Exponential stability and uniqueness in thermoelasticity with two temperature. Dynamics of Continuous, Discrete and Impulsive Systems A 11, 57–68 (2004)

    MathSciNet  MATH  Google Scholar 

  48. Quintanilla R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)

    Article  MATH  Google Scholar 

  49. Puri P., Jordan P.M.: On the propagation of harmonic plane wanes under the two temperature theory. Int. J. Eng. Sci. 44, 1113–1126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Youssef H.M.: Theory of two-temperature generalized thermoelasticity. IMA J. Appl. Math. 71, 1–8 (2006)

    Article  MathSciNet  Google Scholar 

  51. El-Karamany A.S., Ezzat M.A.: On the two-temperature Green-Naghdi Thermoelasticity theories. J. of Thermal stresses 34, 1207–1226 (2011)

    Article  Google Scholar 

  52. Quintanilla R.: A well posed problem for the dual-phase-lag heat conduction. J. of Thermal stresses 31, 260–269 (2008)

    Article  Google Scholar 

  53. Quintanilla R.: A well posed problem for the three-dual-phase-lag heat conduction. J. Therm. Stress. 32, 1270–1278 (2009)

    Article  Google Scholar 

  54. Youssef H.M., Al-Harby A.H.: State-space approach of two temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different type thermal loading. Arch. Appl. Mech. 77, 675–687 (2007)

    Article  MATH  Google Scholar 

  55. Youssef H.M., Al-Lehaibi E.A.: State-space approach of two temperature generalized thermoelasticity of one dimensional problem. Int. J. Solid Struct. 44, 1550–1562 (2007)

    Article  MATH  Google Scholar 

  56. Banik S., Kanoria M.: Two temperature generalized thermoelastic interactions in an infinite body with a spherical cavity. Int. J. Thermophys. 32, 1247–1270 (2011)

    Article  Google Scholar 

  57. Banik S., Kanoria M.: Effects of three-phase-lag on two temperature generalized thermoelasticity for infinite medium with spherical cavity. J. Appl. Math. Mech. Engl. Ed. 33, 483–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mukhopadhyay S., Kumar R.: Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity. J. Therm. Stress. 32, 341–360 (2009)

    Article  Google Scholar 

  59. Youssef H.M.: Two dimensional problem of two-temperature generalized thermoelastic half space subjected to ramp-type heating. J. Comput. Math. Model. 19, 201–216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Islam M., Kar A., Kanoria M.: Two-temperature generalized thermoelasticity in a fiber reinforced hollow cylinder under thermal shock. Int. J. Comput. Methods Eng. Sci. Mech. 14, 1–24 (2013)

    Article  MathSciNet  Google Scholar 

  61. Kumar R., Prasad R., Mukhopadhyay S.: Variational and reciprocal principles in two temperature generalized thermoelasticity. J. Therm. Stress. 33(2010), 161–171 (2010)

    Article  Google Scholar 

  62. Kumar R., Prasad R., Mukhopadhyay S.: Some theorems on two temperature generalized thermoelasticity. Arch. Appl. Mech. 81, 1031–1040 (2011)

    Article  MATH  Google Scholar 

  63. Bahar L.Y., Hetnarski R.B.: State-space approach to thermoelasticity. J. Therm. Stress. 1, 135–145 (1978)

    Article  Google Scholar 

  64. Honig G., Hirdes U.: A method of the numerical inversion of Laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. Roychoudhuri S.K.: One-dimensional thermoelastic waves in elastic half-space with dual phase-lag effects. J. Mech. Mater. Struct. 2(3), 489–503 (2007)

    Article  Google Scholar 

  66. Lekhnitskii S.: Theory of Elasticity of an Anisotropic Body. Mir publication, Moscow (1980)

    Google Scholar 

  67. Hetnerski, R.B., Eslami, M.R.: Thermal stresses-advanced theory and applications, vol. 158, p. 560 (2009)

  68. Boley B.A.: Discontinuities in integral-transform solutions. Q. Appl. Math. 19, 273–284 (1962)

    MathSciNet  MATH  Google Scholar 

  69. Wang H.M., Ding H.J., Chen Y.M.: Thermo-elastic dynamic solution of a multilayered spherically isotropic hollow sphere for spherically symmetric problems. Acta Mech. 173, 131–145 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Kar, A. & Kanoria, M. Thermoelastic response in a symmetric spherical shell. Acta Mech 225, 2841–2864 (2014). https://doi.org/10.1007/s00707-014-1214-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1214-1

Keywords

Navigation