Skip to main content
Log in

Comparative study of different nonconserving time integrators for wave propagation in hyperelastic waveguides

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper addresses the formulation and numerical efficiency of various numerical models of different nonconserving time integrators for studying wave propagation in nonlinear hyperelastic waveguides. The study includes different nonlinear finite element formulations based on standard Galerkin finite element model, time domain spectral finite element model, Taylor–Galerkin finite element model, generalized Galerkin finite element model and frequency domain spectral finite element model. A comparative study on the computational efficiency of these different models is made using a hyperelastic rod model, and the optimal computational scheme is identified. The identified scheme is then used to study the propagation of transverse and longitudinal waves in a Timoshenko beam with Murnaghan material nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bathe K.J.: Finite Element Procedures. Prentice-Hall of India Pvt. Ltd., New Delhi (2005)

    Google Scholar 

  2. Hughes T.J.R.: The Finite Element Method. Linear Static and Dynamic Finite Element Analysis. Dover, New York (2000)

    MATH  Google Scholar 

  3. Zienkiewicz O.C., Morgan K.: Finite Elements & Approximation. Dover, New York (2006)

    Google Scholar 

  4. Reddy J.N.: An Introduction to the Finite Element Method. McGraw-Hill Education, New York (2005)

    Google Scholar 

  5. Reddy, J.N.: In: Introduction to Nonlinear Finite Element Analysis Oxford University Press, Oxford (2004)

  6. Ogden R.W.: Nonlinear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  7. Chadwick P.: Continuum Mechanics: Concise Theory and Problems. Dover, New York (1999)

    Google Scholar 

  8. Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1994)

    Google Scholar 

  9. Ciarlet P.G.: An Introduction to Differential Geometry with Applications to Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  10. Wriggers P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. Basar Y., Weichert D.: Nonlinear Continuum Mechanics of Solids: Fundamental Mathematical and Physical Concepts. Springer, Berlin (1999)

    Google Scholar 

  12. Murnaghan F.D.: Finite Deformations of an Elastic Solid. Wiley, New York (1951)

    Google Scholar 

  13. Rushchitsky J.J., Cattani C.: Similarities and differences in the description of the evolution of quadratically nonlinear hyperelastic plane waves by Murnaghan and Signorini potentials. Int. J. Appl. Mech. 42, 997–1010 (2006)

    Article  Google Scholar 

  14. Porubov A.V., Maugin G.A.: Cubic non-linearity and longitudinal surface solitary waves. Int. J. Non-linear Mech. 44, 552–559 (2009)

    Article  Google Scholar 

  15. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  16. Ramabathiran, A.A.: Wave Propagation in Hyperelastic Waveguides, Ph.D Thesis. Indian Institute of Science, Bangalore, India (2012)

  17. Hikata A., Chick B., Elbaum C.: Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 3, 22–236 (1965)

    Google Scholar 

  18. de Lima W.J.N., Hamilton M.F.: Finite-amplitude waves in isotropic elastic plates. J. Sound Vib. 265, 819–839 (2003)

    Article  Google Scholar 

  19. Kudela P., Krawczuk M., Ostachowicz W.: Wave propagation modelling in 1D structures using spectral finite elements. J. Sound Vib. 300, 88–100 (2007)

    Article  Google Scholar 

  20. Karniadakis G.E.M., Sherwin S.H.: Spectral/Hp Element Methods for Computational Fluid Dynamics. Oxford Science Publication, Oxford (1999)

    Google Scholar 

  21. Gottlieb D., Orszag S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. Capital City Press, Baton Rouge (1993)

    Google Scholar 

  22. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Google Scholar 

  23. Donea J., Huerta A.: Finite Element Methods for Flow Problems. Wiley, New York (2003)

    Book  Google Scholar 

  24. Donea J., Roig B., Huerta A.: High-order accurate time-stepping schemes for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 182, 249–275 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Safjan A., Oden J.T.: High-order Taylor–Galerkin methods for linear hyperbolic systems. J. Comput. Phys. 120, 206–230 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chung T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge, MA (2002)

    Book  MATH  Google Scholar 

  27. Doyle J.F.: Wave Propagation in Structures. Springer, New York (1999)

    Google Scholar 

  28. Gopalakrishnan S., Chakraborty A., Roy Mahapatra D.: Spectral Finite Element Method. Springer, Berlin (2007)

    Google Scholar 

  29. Gopalakrishnan S., Mitra M.: Wavelet Methods for Dynamical Problems: With Applications to Metallic, Composite, and Nanocomposite Structures. CRC Press, New York (2010)

    Book  Google Scholar 

  30. Pipkins D.S., Atluri S.N.: Non-linear analysis of wave propagation using transform methods. Comput. Mech. 11, 207–227 (1993)

    Article  MATH  Google Scholar 

  31. Cantrell, J.H.: Nonlinear phenomena in solid state physics and technology. In: IEEE Ultrasonics Symposium (1990)

  32. Graff K.F.: Wave Motion in Elastic Solids. Ohio State University Press, Columbus (1975)

    MATH  Google Scholar 

  33. Pratap G.: The Finite Element Method in Structural Engineering: Principles and Practice of Design of Field-Consistent Elements for Structural and Solid Mechanics. Kluwer, Dordrecht (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gopalakrishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, S., Ramabathiran, A.A. Comparative study of different nonconserving time integrators for wave propagation in hyperelastic waveguides. Acta Mech 225, 2789–2814 (2014). https://doi.org/10.1007/s00707-014-1209-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1209-y

Keywords

Navigation