Skip to main content
Log in

Modal effective electromechanical coupling approximate evaluations and simplified analyses: numerical and experimental assessments

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This contribution presents numerical and experimental assessments of the modal effective electromechanical coupling coefficient (EMCC) using popular approximate evaluations and simplified analyses of piezoelectric structures. For this purpose, first, a common benchmark, consisting of a cantilever Aluminum (Al) beam with symmetrically surface-bonded two pairs of large piezoceramic (PZT) patches, is retained for the assessment of EMCC different evaluation formulas and plane strain (PStrain) and plane stress (PStress) two-dimensional (2D) analyses using ANSYS\({^\circledR}\) coupled piezoelectric three-dimensional (3D) and 2D finite elements (FE). Then, similarly, an experimental assessment is conducted on two benchmarks consisting of Al long and short cantilevers equipped symmetrically with pairs of small and large PZT patches. It is found that, in order to get EMCC accurate approximate numerical evaluation, it is crucial to consider the patches electrodes equipotential constraints and, in order to get EMCC accurate 2D results with regard to 3D calculations, it is necessary to use PStress kinematics for approximate 2D analysis. Besides, 3D FE and experimental frequencies are shown to be bounded from below by PStress and from above by PStrain 2D FE results. Moreover, EMCC 2D PStress results are found closer to 3D FE and experimental results than PStrain 2D FE ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEEE Inc.: Standards on piezoelectricity. ANS/IEEE Std 176–1987, USA

  2. Deü J.F., Benjeddou A.: Free-vibration analysis of laminated plates with embedded shear-mode piezoceramic layers. Int. J. Solids Struct. 42, 2059–2088 (2005)

    Article  MATH  Google Scholar 

  3. Trindade M.A., Benjeddou A.: Effective electromechanical coupling coefficients of piezoelectric adaptive structures: critical evaluation and optimization. Mech. Adv. Mater. Struct. 16, 210–223 (2009)

    Article  Google Scholar 

  4. Benjeddou, A.: Approximate evaluations of the modal effective electromechanical coupling coefficient. In: Dattaguru, B., Gopalakrishnan, S., Aatre, V.K. (eds.), Proc. IUTAM Symposium on Multi-functional Materials Structures and Systems, vol. 19, Chap. 31, pp. 307–315. Springer, Dordrecht, IUTAM book series (2010)

  5. Benjeddou A.: New insights in piezoelectric free-vibrations using simplified modeling and analyses. Smart Struct. Syst. 5, 591–612 (2009)

    Article  Google Scholar 

  6. Hagood N.W., von Flotow A.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146, 243–268 (1991)

    Article  Google Scholar 

  7. Benjeddou A., Ranger-Vieillard J.A.: Use of shunted shear-mode piezoceramics for structural vibration passive damping. Comput. Struct. 84, 1415–1425 (2006)

    Article  Google Scholar 

  8. Chevallier G., Ghorbel S., Benjeddou A.: Piezoceramic shunted damping concept: testing, modelling and correlation. Mech. Ind. 10, 397–411 (2009)

    Google Scholar 

  9. Chevallier, G., Ghorbel, S., Benjeddou, A.: A benchmark for free vibration and effective coupling of thick piezoelectric smart structures. Smart Mater. Struct. 17, art \({{{\rm n}}^{\circ}}\) 065007 (2008)

  10. Hamdi M., Ghanmi S., Benjeddou A.: Robust electromechanical finite element updating for piezoelectric structures effective coupling prediction. J. Intell. Mater. Syst. Struct. 25(2), 137–154 (2014)

    Article  Google Scholar 

  11. Benjeddou A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76, 347–363 (2000)

    Article  Google Scholar 

  12. Al-Ajmi, M.A., Benjeddou, A.: Damage indication in smart structures using modal effective electromechanical coupling coefficients. Smart Mater. Struct. 17 art \({{{\rm n}}^{\circ}}\) 035023 (2008)

  13. Naillon M., Coursant R.H., Besnier F.: Analyse de structures piézoélectriques par une méthode d’éléments finis. Acta Electron 25, 341–362 (1983)

    Google Scholar 

  14. Lin M.W., Abatan A.O., Rogers C.A.: Application of commercial finite element codes for the analysis of induced strain actuated structures. J. Intell. Mater. Syst. Struct. 5, 869–875 (1994)

    Article  Google Scholar 

  15. Hollkamp J.J., Starchville T.F.: A self-tuning piezoelectric vibration absorber. J. Intell. Mater. Syst. Struct. 5, 559–566 (1994)

    Article  Google Scholar 

  16. Agnes G.S.: Development of a modal model for simultaneous active and passive piezoelectric vibration suppression. J. Intell. Mater. Syst. Struct. 6, 482–487 (1996)

    Article  Google Scholar 

  17. Agnes G.S., Inman D.J.: Nonlinear piezoelectric vibration absorbers. Smart Mater. Struct. 5, 704–714 (1996)

    Article  Google Scholar 

  18. Viana F.A.G., Steffen V.: Multimodal vibration damping through piezoelectric patches and optimal resonant shunt circuits. J. Braz. Soc. Mech. Sci. Eng. 28, 293–310 (2006)

    Article  Google Scholar 

  19. Hollkamp J.J., Gordon R.W.: An experimental comparison of piezoelectric and constrained layer damping. Smart Mater. Struct. 5, 715–722 (1996)

    Article  Google Scholar 

  20. Van Randeraat J., Setterington R.E.: Piezoelectric ceramics, 2nd edn. Mullard, London (1974)

    Google Scholar 

  21. Heyliger P., Brooks S.: Free vibration of piezoelectric laminates in cylindrical bending. Int. J. Solids Struct. 32, 2945–2960 (1995)

    Article  MATH  Google Scholar 

  22. Vel S.S., Mewer R.C., Batra R.C.: Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. Int. J. Solids Struct. 41, 1625–1643 (2004)

    Article  MATH  Google Scholar 

  23. Zhang Z., Feng C., Liew K.M.: Three-dimensional vibration analysis of multilayered piezoelectric composite plates. Int. J. Eng. Sci. 44, 397–408 (2006)

    Article  MATH  Google Scholar 

  24. Fernandes A., Pouget J.: Analytical and numerical approaches to piezoelectric bimorph. Int. J. Solids Struct. 40, 4331–4352 (2003)

    Article  MATH  Google Scholar 

  25. Shu X.: Free vibration of laminated piezoelectric composite plates based on accurate theory. Compos. Struct. 67, 375–382 (2005)

    Article  Google Scholar 

  26. Krommer M.: An electromechanically coupled plate theory taking into account the influence of shear rotary inertia and electric field. Mech. Res. Commun. 27, 197–202 (2000)

    Article  MATH  Google Scholar 

  27. Krommer M.: Piezoelectric vibrations of composite Reissner-Mindlin type plate. J. Sound Vib. 263, 871–891 (2003)

    Article  Google Scholar 

  28. Jiang, J.D., Li, D.X.: Finite element formulation for thermopiezoelectric elastic laminated composite plates. Smart Mater. Struct. 17, art \({n^{\circ}}\) 015027 (2008)

  29. Wang S.Y.: A finite element model for the static and dynamic analysis of a piezoelectric bimorph. Int. J. Solids Struct. 41, 4075–4096 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayech Benjeddou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benjeddou, A. Modal effective electromechanical coupling approximate evaluations and simplified analyses: numerical and experimental assessments. Acta Mech 225, 2721–2742 (2014). https://doi.org/10.1007/s00707-014-1206-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1206-1

Keywords

Navigation