Skip to main content
Log in

Guided wave characteristics in functionally graded piezoelectric rings with rectangular cross-sections

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

For the purpose of design and optimization of functionally graded piezoelectric material (FGPM) transducers, wave propagation in FGPM structures has received much attention in the past twenty years. But previous research efforts have been focused essentially on semi-infinite structures and one-dimensional structures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. This paper proposes a double orthogonal polynomial series approach to solving the wave propagation problem in a two-dimensional FGPM structure, namely an FGPM ring with a rectangular cross-section. By numerical comparison with the available reference results for a purely elastic homogeneous rectangular rod, the validity of the extended polynomial approach is illustrated. The dispersion curves and the electric potential distributions of various FGPM rectangular rings with different material gradient directions, different polarization directions, different radius to thickness ratios, and different width to thickness ratios are calculated to reveal the guided wave characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu C.C.M., Kahn M., Moy W.: Piezoelectric ceramics with functional gradients: a new application in material design. J. Am. Ceram. Soc. 79, 809–812 (1996)

    Article  Google Scholar 

  2. Takagi K., Li J.F., Yokoyama S., Watanabe R.: Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. J. Eur. Ceram. Soc. 23, 1577–1583 (2003)

    Article  Google Scholar 

  3. Zhu X., Zhu J., Zhou S., Li Q., Liu Z.: Microstructures of the monomorph piezoelectric ceramic actuators with functional gradients. Sensors Actuators A Phys. 74, 198–202 (1999)

    Article  Google Scholar 

  4. Li X., Vartuli J.S., Milius D.L., Aksay I.A., Shih W.Y., Shih W.H.: Electromechanical properties of a ceramic d31-gradient flextensional actuator. J. Eur. Ceram. Soc. 84, 996–1003 (2001)

    Article  Google Scholar 

  5. Li J.F., Takagi K., Ono M., Pan W., Watanabe R.: Fabrication and evaluation of porous ceramics and porosity-graded piezoelectric actuators. J. Eur. Ceram. Soc. 86, 1094–1098 (2003)

    Article  Google Scholar 

  6. Chen Y.H., Ma J., Li T.: A functional gradient ceramic monomorph actuator fabricated using electrophoretic deposition. Ceram. Int. 30, 683–687 (2004)

    Article  Google Scholar 

  7. Qui J., Tani J., Ueno T., Morita T., Takahashi H., Du H.: Fabrication and high durability of functionally graded piezoelectric bending actuators. Smart Mater. Struct. 12, 115–121 (2003)

    Article  Google Scholar 

  8. Jin D., Meng Z.: Functionally graded PZT/ZnO piezoelectric composites. J. Mater. Sci. Lett. 22, 971–974 (2003)

    Article  Google Scholar 

  9. Liu, G.R., Tani, J.: Characteristics of wave propagation in functionally gradient piezoelectric material plates and its response analysis: Part 1: Theory, Part 2: Calculation results. Trans. Jpn. Soc. Mech. Eng. Jpn. 57(A), 2122–2133 (1991)

  10. Han X., Liu G.R.: Elastic waves in a functionally graded piezoelectric cylinder. Smart Mater. Struct. 12, 962–971 (2003)

    Article  Google Scholar 

  11. Liu G.R., Dai K.Y., Han X., Ohyoshi T.: Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates. J. Sound Vib. 268, 131–147 (2003)

    Article  Google Scholar 

  12. Chakraborty, A., Roy Mahapatra, D., Gopalakrishnan, S.: Finite element simulation of BAW propagation in inhomogeneous plate due to piezoelectric actuation. In: Lecture Notes in Computer Science, pp. 715–724 (2003)

  13. Chakraborty A., Gopalakrishnan S., Kausel E.: Wave propagation analysis in inhomogeneous piezo-composite layer by the thin-layer method. Int. J. Numer. Methods Eng. 64, 567–598 (2005)

    Article  MATH  Google Scholar 

  14. Roy Mahapatra D., Singhal A., Gopalakrishnan S.: Lamb wave characteristics of thickness-graded piezoelectric IDT. Ultrasonics 43, 736–746 (2005)

    Article  Google Scholar 

  15. Hasheminejad S.M., Alaei-Varnosfaderani M.: Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder. J. Intell. Mater. Syst. Struct. 23, 775–790 (2012)

    Article  Google Scholar 

  16. Li X.Y., Wang Z.K., Huang S.H.: Love waves in functionally graded piezoelectric materials. Int. J. Solids Struct. 41, 7309–7328 (2004)

    Article  MATH  Google Scholar 

  17. Liu J., Wang Z.K.: The propagation behavior of Love waves in a functionally graded layered piezoelectric structure. Smart Mater. Struct. 14, 137–146 (2005)

    Article  Google Scholar 

  18. Gao L.M., Wang J., Zhong Zh., Du J.K.: An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method. Acta Mech. 208, 249–258 (2009)

    Article  MATH  Google Scholar 

  19. Lefebvre J.E., Zhang V., Gazalet J. et al.: Acoustic wave propagation in continuous functionally graded plates, an extension of the Legendre polynomial approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 1332 (2001)

    Article  Google Scholar 

  20. Yu J.G., Wu B., Chen G.Q.: Wave characteristics in functionally graded piezoelectric hollow cylinders. Arch. Appl. Mech. 79, 807–824 (2009)

    Article  MATH  Google Scholar 

  21. Du J.K., Jin X.Y., Wang J., Xian K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46, 13–22 (2007)

    Article  Google Scholar 

  22. Datta S., Hunsinger B.J.: Analysis of surface waves using orthogonal functions. J. Appl. Phys 49, 475–479 (1978)

    Article  Google Scholar 

  23. Yu J.G., Wu B., Huo H.L., He C.F.: Characteristics of guided waves in anisotropic spherical curved plates. Wave Motion 44, 271–281 (2007)

    Article  MATH  Google Scholar 

  24. Wu B., Yu J.G., He C.F.: Wave propagation in non-homogeneous magneto-electro-elastic plates. J. Sound Vib. 317 , 250–264 (2008)

    Article  Google Scholar 

  25. Yu J.G., Wu B., He C.F.: Guided thermoelastic waves in functionally graded plates with two relaxation times. Int. J. Eng. Sci. 48, 1709–1720 (2010)

    Article  Google Scholar 

  26. Yu J.G.: Viscoelastic shear horizontal wave in graded and layered plates. Int. J. Solids Struct. 48, 2361–2372 (2011)

    Article  Google Scholar 

  27. Hayashi T., Song W.-J., Rose J. L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J.G., Zhang, C. & Lefebvre, J.E. Guided wave characteristics in functionally graded piezoelectric rings with rectangular cross-sections. Acta Mech 226, 597–609 (2015). https://doi.org/10.1007/s00707-014-1197-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1197-y

Keywords

Navigation