Skip to main content
Log in

Boundary element method for solid materials with multiple types of inclusions

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The boundary element method is developed for solving the problems of solid materials containing multiple types of inclusions, such as pores or cavities, elastic inclusions, rigid inclusions, as well as fluid inclusions. In fact, such a kind of problem can be seen as a boundary integral equation (BIE) problem for a multiply connected domain, but it cannot be solved directly for lack of adequate boundary conditions, i.e., both the displacements and tractions on the inner boundaries of the multiply connected domain are unknown quantities. The so-called incidence matrices are established between the tractions and displacements on the inclusion–matrix interfaces, and it happens that they are just the complementary boundary conditions that are missing for solving the algebraic systems arising from the BIEs, and consequently the problems become solvable. The numerical examples apply the method to the analysis of problems with multiple types of inclusions, and the results indicate that this boundary element method scheme is effective and useful for such problems. Furthermore, the present scheme can be used to investigate the equivalent mechanical properties of composite materials containing multiple types of inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bhattacharyya A., Lagoudas D.C.: Effective elastic moduli of two-phase transversely isotropic composites with aligned clustered fibers. Acta Mech. 145, 65–93 (2000)

    Article  MATH  Google Scholar 

  2. Weng G.J.: Effective bulk moduli of two functionally graded composites. Acta Mech. 166, 57–67 (2003)

    Article  MATH  Google Scholar 

  3. Kakavas P.A., Anifantis N.K.: Effective moduli of hyperelastic porous media at large deformation. Acta Mech. 160, 127–147 (2003)

    Article  MATH  Google Scholar 

  4. Lin P.J., Ju J.W.: Effective elastic moduli of three-phase composites with randomly located and interacting spherical particles of distinct properties. Acta Mech. 208, 11–26 (2009)

    Article  MATH  Google Scholar 

  5. Ju J.W., Yanase K.: Micromechanical effective elastic moduli of continuous fiber-reinforced composites with near-field fiber interactions. Acta Mech. 216, 87–103 (2011)

    Article  MATH  Google Scholar 

  6. Zhou K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223, 293–308 (2012)

    Article  MATH  Google Scholar 

  7. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A: Math. Phys. Eng. Sci. Lond. A 241(1226), 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hashin Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 143–150 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hashin Z., Shtrikman S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

  11. Budiansky B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13(4), 223–227 (1965)

    Article  Google Scholar 

  12. Huang Y., Hu K.X., Chandra A.: A self-consistent mechanics method for solids containing inclusions and a general distribution of cracks. Acta Mech. 105, 69–84 (1994)

    Article  MATH  Google Scholar 

  13. Christensen R.M., Lo K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27(4), 315–30 (1979)

  14. Huang Y., Hu K.X., Chandra A.: A generalized self-consistent mechanics method for microcracked solids. J. Mech. Phys. Solids 42(8), 1273–1291 (1994)

    Article  MATH  Google Scholar 

  15. Mclaughlin R.: A study of the differential scheme for composite materials. Int. J. Eng. Sci. 15(4), 237–244 (1977)

    Article  MATH  Google Scholar 

  16. Hashin Z.: The differential scheme and its application to cracked materials. J. Mech. Phys. Solids 36(6), 719–734 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  18. Zheng Q.S., Du D.X.: Closed-form interacting solutions for overall elastic moduli of composite materials with multi-phase inclusions, holes and micro-cracks. Key Eng. Mater. 145(149), 479–488 (1998)

    Article  Google Scholar 

  19. Zheng Q.S., Du D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49(11), 2765–2788 (2001)

    Article  MATH  Google Scholar 

  20. Achenbach J.D., Zhu H.: Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites. J. Mech. Phys. Solids 37(3), 381–393 (1989)

    Article  Google Scholar 

  21. Achenbach J.D., Zhu H.: Effect of interphases on micro and macro-mechanical behavior of hexagonal-array fiber composites. ASME J. Appl. Mech. 57, 956–963 (1990)

    Article  Google Scholar 

  22. Zhu H., Achenbach J.D.: Effect of fiber-matrix interphase defects on micro-level stress states at neighboring fibers. J. Compos. Mater. 25(4), 224–238 (1991)

    Google Scholar 

  23. Hu K.X., Chandra A.: Interactions among general systems of cracks and anti-cracks: an integral-equation approach. J. Appl. Mech. 60, 920–928 (1993)

    Article  MATH  Google Scholar 

  24. Hu K.X., Huang Y.: A micro-cracked solid reinforced by rigid-line fibers. Compos. Sci. Tech. 49(2), 145–151 (1993)

    Article  Google Scholar 

  25. Chandra A., Huang Y., Wei X., Hu K.X.: A hybrid micro-macro BEM formulation for micro-crack clusters in elastic components. Int. J. Numer. Methods Eng. 38(7), 1215–1236 (1995)

    Article  MATH  Google Scholar 

  26. Huang Y., Chandra A., Hu X.K.: Stiffness evaluation for solids containing dilute distributions of inclusions and micro-cracks. ASME Trans. J. Appl. Mech. 62(1), 71–77 (1995)

    Article  MATH  Google Scholar 

  27. Gulrajani S.N., Mukherjee S.: Sensitivities and optimal design of hexagonal array fiber composites with respect to interphase properties. Int. J. Solids Struct. 30(15), 2009–2026 (1993)

    Article  MATH  Google Scholar 

  28. Liu Y.J., Rizzo F.J.: Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation. J. Acoust. Soc. Am. 102(2), 926–932 (1997)

    Article  Google Scholar 

  29. Luo J.F., Liu Y.J., Berger E.J.: Analysis of two-dimensional thin structures (from micro- to nano-scales) using boundary element method. Comput. Mech. 22, 404–412 (1998)

    Article  MATH  Google Scholar 

  30. Liu Y.J., Xu N., Luo J.F.: Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method. ASME J. Appl. Mech. 67, 41–49 (2000)

    Article  MATH  Google Scholar 

  31. Chen X.L., Liu Y.J.: Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element method. Computat. Mater. Sci. 21(1), 86–94 (2001)

    Article  Google Scholar 

  32. Liu Y.J., Takahashi T., Chen X.L., Munakata H., Nishimura N., Otani Y.: A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. ASME J. Appl. Mech. 72(1), 115–128 (2005)

    Article  MATH  Google Scholar 

  33. Chen X.M., Papathanasiou T.D.: Interface stress distributions in transversely loaded continuous fiber composites: parallel computation in multi-fiber RVEs using the boundary element method. Compos. Sci. Technol. 64(9), 1101–1114 (2004)

    Article  Google Scholar 

  34. Ingber M.S., Papathanasiou T.D.: A parallel-supercomputing investigation of the stiffness of aligned, short-fiber-reinforced composites using the boundary element method. Int. J. Numer. Methods Eng. 40(18), 3477–3491 (1997)

    Article  Google Scholar 

  35. Hu N., Wang B., Tan G.W., Yao Z.H., Yuan W.F.: Effective elastic properties of 2-D solids with circular holes: numerical simulations. Compos. Sci. Technol. 60(9), 1811–1823 (2000)

    Article  Google Scholar 

  36. Kong F.Z., Yao Z.H., Zheng X.P.: BEM for simulation of a 2D elastic body with randomly distributed circular inclusions. Acta Mech. Solida Sinica 15(1), 81–88 (2002)

    Google Scholar 

  37. Yao, Z.H., Wang, P.B., Kong, F.Z.: Simulation of 2D elastic solids with randomly distributed inclusions without or with interphases by BEM. In: Proceedings of the Third International Conference on Boundary Element Techniques, Beijing (2002)

  38. Yao Z.H., Kong F.Z., Wang H.T., Wang P.B.: 2D simulation of composite materials using BEM. Eng. Anal. Bound. Elem. 28(8), 927–935 (2004)

    Article  MATH  Google Scholar 

  39. Wang H.T., Yao Z.H.: A new fast multipole boundary element method for large scale analysis of mechanical properties in 3D Particle-reinforced composites. Comput. Model. Eng. Sci. 7(1), 85–95 (2005)

    MATH  MathSciNet  Google Scholar 

  40. Wang H.T., Yao Z.H., Wang P.B.: On the preconditioners for fast multipole boundary element methods for 2D multi-domain elastostatics. Eng. Anal. Bound. Elem. 29(7), 673–688 (2005)

    Article  MATH  Google Scholar 

  41. Wang H.T., Yao Z.H.: Large scale analysis of mechanical properties in 3-D fiber-reinforced composites using a new fast multipole boundary element method. Tsinghua Sci. Technol. 12(5), 554–561 (2007)

    Article  MathSciNet  Google Scholar 

  42. Wang H.T., Yao Z.H.: A rigid-fiber-based boundary element model for strength simulation of carbon nanotube reinforced composites. Comput. Model. Eng. Sci. 29(1), 1–13 (2008)

    MathSciNet  Google Scholar 

  43. Lei T., Yao Z.H., Wang H.T., Wang P.B.: A parallel fast multipole BEM and its applications to large-scale analysis of 3-D fiber-reinforced composites. Acta Mech. Sinica 22(3), 225–232 (2006)

    Article  MATH  Google Scholar 

  44. Huang Q.Z., Zheng X.P., Yao Z.H.: Boundary element method for 2D solid with fluid-filled Pores. Eng. Anal. Bound. Elem. 35(2), 191–199 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shafiro B., Kachanov M.: Materials with fluid-filled pores of various shapes: effective elastic properties and fluid pressure polarization. Int. J. Solid Struct. 34(27), 3517–3540 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Tough J.G., Miles R.G.: A method for characterizing polygons in terms of the principal axes. Comput. Geosci. 10(2-3), 347–350 (1984)

    Article  Google Scholar 

  47. Zarkos R.W., Rogers G.F.: A complete algorithm for computing area and center of gravity for polygons. Comput. Geosci. 13(5), 561 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Zhang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, QZ., Xu, ZG., Qiang, HF. et al. Boundary element method for solid materials with multiple types of inclusions. Acta Mech 226, 547–570 (2015). https://doi.org/10.1007/s00707-014-1186-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1186-1

Keywords

Navigation