Skip to main content
Log in

Eshelby’s inclusion and dislocation problems for an isotropic circular domain bonded to an anisotropic medium

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper mainly investigates a two-dimensional Eshelby’s problem of an inclusion of arbitrary shape embedded within an isotropic elastic circular domain which is perfectly bonded to the surrounding infinite anisotropic elastic medium. The Muskhelishvili’s complex variable formulation in isotropic elasticity and the Stroh formalism in anisotropic elasticity are employed to derive a very simple and explicit analytical solution. The coefficients in the derived six analytic functions within the isotropic circular domain only contain the Barnett-Lothe tensors for the surrounding anisotropic medium and the shear modulus and Poisson’s ratio for the isotropic circular domain. Several examples are discussed in detail to demonstrate and validate the obtained analytical solution. By using a similar method, we also investigate a line dislocation located in an isotropic circular cylinder which is perfectly bonded to the surrounding anisotropic medium and derive the image force acting on the line dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A241, 376–396 (1957)

    Article  MathSciNet  Google Scholar 

  2. Eshelby J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A252, 561–569 (1959)

    Article  MathSciNet  Google Scholar 

  3. Eshelby J.D.: Elastic inclusions and inhomogeneities. In: Sneddon, N.I., Hill, R. (eds.) Progress in Solid Mechanics, vol. 2, pp. 89–104. North-Holland, Amsterdam (1962)

    Google Scholar 

  4. Li S., Sauer R., Wang G.: A circular inclusion in a finite domain I. The Dirichlet-Eshelby problem. Acta Mech. 179, 67–90 (2005)

    Article  MATH  Google Scholar 

  5. Wang G., Li S., Sauer R.: A circular inclusion in a finite domain II. The Neumann-Eshelby problem. Acta Mech. 179, 91–110 (2005)

    Article  Google Scholar 

  6. Li S., Sauer R.A., Wang G.: The Eshelby tensors in a finite spherical domain: I. Theoretical formulations. ASME J. Appl. Mech. 74, 770–783 (2007)

    Article  MathSciNet  Google Scholar 

  7. Li S., Wang G., Sauer R.A.: The Eshelby tensors in a finite spherical domain: II. Applications in homogenization. ASME J. Appl. Mech. 74, 784–797 (2007)

    Article  MathSciNet  Google Scholar 

  8. Sauer R.A., Wang G., Li S.: The composite Eshelby tensors and their applications to homogenization. Acta Mech. 197, 63–96 (2008)

    Article  MATH  Google Scholar 

  9. Mejak G.: Eshelby tensors for a finite spherical domain with an axisymmetric inclusion. Eur. J. Mech. A Solids 30, 477–490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zou W.N., He Q.C., Zheng Q.S.: Inclusions in a finite elastic body. Int. J. Solids Struct. 49, 1627–1636 (2012)

    Article  Google Scholar 

  11. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  12. Ting T.C.T.: Anisotropic Elasticity-Theory and Applications. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  13. Ru C.Q.: Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane. ASME J. Appl. Mech. 66, 315–322 (1999)

    Article  MathSciNet  Google Scholar 

  14. Ru C.Q., Schiavone P., Mioduchowski A.: Elastic fields in two jointed half-planes with an inclusion of arbitrary shape. Z. Angew. Math. Phys. 52, 18–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang X., Sudak L.J., Ru C.Q.: Elastic fields in two imperfectly bonded half-planes with a thermal inclusion of arbitrary shape. Z. Angew. Math. Phys. 58, 488–509 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Christensen R.M., Lo K.H.: Solutions for the effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330 (1979)

    Article  MATH  Google Scholar 

  17. Luo H.A., Weng G.J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-Tanaka’s method. Mech. Mater. 6, 347–361 (1987)

    Article  Google Scholar 

  18. Luo H.A., Weng G.J.: On Eshelby’s S-tensor in a three-phase cylindrical concentric solid and the elastic moduli of fibre-reinforced composites. Mech. Mater. 8, 77–88 (1989)

    Article  Google Scholar 

  19. Ting T.C.T.: Common errors on mapping of nonelliptic curves in anisotropic elasticity. ASME J. Appl. Mech. 67, 655–657 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Suo Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. Lond. A427, 331–358 (1990)

    Article  MathSciNet  Google Scholar 

  21. Suo Z.: Singularities interacting with singularities and cracks. Int. J. Solids Struct. 25, 1133–1142 (1989)

    Article  Google Scholar 

  22. Dundurs J.: Elastic interaction of dislocations with inhomogeneities. In: Mura, T. (ed.) Mathematical Theory of Dislocations, pp. 70–115. ASME, New York (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Eshelby’s inclusion and dislocation problems for an isotropic circular domain bonded to an anisotropic medium. Acta Mech 226, 103–121 (2015). https://doi.org/10.1007/s00707-014-1175-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1175-4

Keywords

Navigation