Skip to main content
Log in

Elastohydrodynamic lubrication modeling for materials with multiple cracks

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a semi-analytic solution for multiple cracks beneath a half-space surface under elastohydrodynamic lubrication (EHL) contact. The solution not only takes into account the fluid–structure interactions in the EHL contact but also the interactions among all the cracks. In developing the governing equation, each crack of mixed modes I and II is modeled as a continuous distribution of climb and glide dislocations with unknown densities. With such a treatment, the original problem for materials with multiple cracks is converted into two subproblems: a homogeneous EHL contact problem with the fluid pressure distribution and the lubricant film thickness to be determined, and a half-space problem with unknown dislocation densities, which are iteratively obtained by a modified conjugate gradient method. A numerical algorithm is developed to integrate the two problems. The computational process is performed until the convergence of the displacements, which are the sum of the displacements due to the fluid pressure and the subsurface cracks. Sample cases are presented to analyze the pressure and lubricant film thickness profiles of EHL contact and the subsurface stresses for cracked materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Habchi W.: A Full-System Finite Element Approach to Elastohydrodynamic Lubrication Problems: Application to Ultra-Low-Viscosity Fluids. University of Lyon, France (2008)

    Google Scholar 

  2. Ai, X.: Numerical Analyses of Elastohydrodynamically Lubricated Line and Point Contacts with Rough Surfaces by Using Semi-system and Multigrid Methods. Northwestern University, USA (1993)

  3. Dowson D., Higginson G.R.: A numerical solution to the elastohydrodynamic problem. J. Mech. Eng. Sci. 1, 6–15 (1959)

    Article  MATH  Google Scholar 

  4. Dowson, D., Higginson, G.R.:Elastohydrodynamic Lubrication, the Fundamentals of Roller and Gear Lubrication. Pergamon, Oxford (1966)

  5. Zhu D., Cheng H.S.: An analysis and computational procedure for EHL film thickness, friction and flash temperature in line and point contacts. Tribol. T. 32, 364–370 (1989)

    Article  Google Scholar 

  6. Zhu, D., Hu, Y.Z.: The study of transition from full film elastohydrodynamic to mixed and boundary lubrication. In: Proceedings of the STLE/ASME, 1999, pp. 150–156 (1999)

  7. Zhu D., Hu Y.Z.: A computer program package for the prediction of EHL and mixed lubrication characteristics, friction, subsurface stresses and flash temperatures based on measured 3-D surface roughness. Tribol. T. 44, 383–390 (2001)

    Article  Google Scholar 

  8. Zhu D., Wang Q.J.: Elastohydrodynamic lubrication: a gateway to interfacial mechanics—review and prospect. J. Tribol. 133, 041001-1–041001-14 (2011)

    Article  Google Scholar 

  9. Habchi W., Eyheramendy D., Vergne P., Morales-Espejel G.: A full-system approach of the elastohydrodynamic line/point contact problem. J. Tribol. 130, 021501-1–021501-10 (2008)

    Article  Google Scholar 

  10. Weng G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  11. Qiu Y.P., Weng G.J.: The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite. Int. J. Solids. Struct. 27, 1537–1550 (1991)

    Article  MATH  Google Scholar 

  12. Liu Y.W., Fang Q.H.: Analysis of a screw dislocation inside an inhomogeneity with interface stress. Mater. Sci. Eng. A 464, 117–123 (2007)

    Article  Google Scholar 

  13. Fang Q.H., Liu Y.W., Wen P.H.: A piezoelectric screw dislocation interacting with an elliptical inclusion containing electrically conductive interfacial rigid lines. Int. J. Mech. Sci. 50, 683–693 (2008)

    Article  MATH  Google Scholar 

  14. Fang Q.H., Liu Y.W., Wen P.H.: Screw dislocations in a three-phase composite cylinder model with interface stress. J. Appl. Mech. 75, 041019-1–041019-8 (2008)

    Article  Google Scholar 

  15. Fang Q.H., Liu Y.W., Jin B., Wen P.H.: Effect of interface stresses on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion. Int. J. Solids. Struct. 46, 1413–1422 (2009)

    Article  MATH  Google Scholar 

  16. Li Z., Li Y., Sun J., Feng X.Q.: An approximate continuum theory for interaction between dislocation and inhomogeneity of any shape and properties. J. Appl. Phys. 109, 113529-1–113529-7 (2011)

    Google Scholar 

  17. Feng H., Fang Q.H., Liu Y.W., Jin B.: Image force and stability of a screw dislocation inside a coated cylindrical inhomogeneity with interface stresses. Acta Mech. 220, 315–329 (2011)

    Article  MATH  Google Scholar 

  18. Zhao Y.X., Fang Q.H., Liu Y.W.: Edge misfit dislocation formation at theinterface of a nanopore and infinite substrate with surface/interface effects. Philos. Mag. 92, 4230–4249 (2012)

    Article  Google Scholar 

  19. Fang Q.H., Zhang L.C.: Prediction of the threshold load of dislocation emission in silicon during nanoscratching. Acta Mater. 61, 5469–5476 (2013)

    Article  MathSciNet  Google Scholar 

  20. Chen J.B., Fang Q.H., Liu Y.W.: Interaction between dislocation and subsurface crack under condition of slip caused by half-plane contact surface normal force. Eng. Fract. Mech. 114, 115–126 (2013)

    Article  Google Scholar 

  21. Zhao Y.X., Fang Q.H., Liu Y.W.: Edge misfit dislocations in core-shell nanowire with surface/interface effects and different elastic constants. Int. J. Mech. Sci. 74, 173–184 (2013)

    Article  Google Scholar 

  22. Zhao Y.H., Weng G.J.: Plasticity of a two-phase composite with partially debonded inclusions. Int. J. Plast. 12, 781–804 (1996)

    Article  MATH  Google Scholar 

  23. Li C., Weng G.J.: Antiplane crack problem in functionally graded piezoelectric materials. J. Appl. Mech. 69, 481–488 (2002)

    Article  MATH  Google Scholar 

  24. Liu Y.W., Fang Q.H., Jiang C.P.: Interaction between an edge dislocation and a circular inclusion with interfacial rigid lines. Acta Mech. 180, 157–174 (2005)

    Article  MATH  Google Scholar 

  25. Fang Q.H., Liu Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54, 4213–4220 (2006)

    Article  Google Scholar 

  26. Wang G.F., Feng X.Q., Yu S.W.: Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. J. Appl. Phys. 102, 043533-1–043533-6 (2007)

    Google Scholar 

  27. Fang Q.H., Jin B., Liu Y., Liu Y.W.: Interaction between screw dislocations and inclusions with imperfect interfaces in fiber-reinforced composites. Acta Mech. 203, 113–125 (2009)

    Article  MATH  Google Scholar 

  28. Pan Y., Weng G.J., Meguid S.A., Bao W.S., Zhu Z.-H., Hamouda A.M.S.: Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J. Appl. Phys. 110, 123715-1– 123715-5 (2011)

    Google Scholar 

  29. Markenscoff X.: Evolution equation of moving defects: dislocations and inclusions. Int. J. Fract. 166, 35–40 (2010)

    Article  MATH  Google Scholar 

  30. Hoh H.J., Xiao Z.M., Luo J.: On the fracture behavior of a Zener–Stroh crack with plastic zone correction in three-phase cylindrical composite material. Mech. Mater. 45, 1–9 (2012)

    Article  Google Scholar 

  31. Hoh H.J., Xiao Z.M., Luo J.: Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion. Philos. Mag. 90, 3511–3530 (2010)

    Article  Google Scholar 

  32. Luo J., Zhou K., Xiao Z.M.: Stress investigation on a Griffith crack initiated from an eccentric disclination in a cylinder. Acta Mech. 202, 65–77 (2009)

    Article  MATH  Google Scholar 

  33. Markenscoff X.: The expanding spherical inhomogeneity with transformation strain. Int. J. Fract. 174, 41–48 (2012)

    Article  Google Scholar 

  34. Zhou, K., Wei, R.: Multiple cracks in a half-space under contact loading. Acta Mech. 225, 1487–1502 (2014)

    Google Scholar 

  35. Miller G.R., Keer L.M.: Interaction between a rigid indenter and a near-surface void or inclusion. J. Appl. Mech. 50, 615–620 (1983)

    Article  MATH  Google Scholar 

  36. Kuo C.H.: Stress disturbances caused by the inhomogeneity in an elastic half-space subjected to contact loading. Int. J. Solids. Struct. 44, 860–873 (2007)

    Article  MATH  Google Scholar 

  37. Kuo C.H.: Contact stress analysis of an elastic half-plane containing multiple inclusions. Int. J. Solids. Struct. 45, 4562–4573 (2008)

    Article  MATH  Google Scholar 

  38. Leroux J., Fulleringer B., Nelias D.: Contact analysis in presence of spherical inhomogeneities within a half-space. Int. J. Solids. Struct. 47, 3034–3049 (2010)

    Article  MATH  Google Scholar 

  39. Zhou K., Keer L.M., Wang Q.J.: Semi-analytic solution for multiple interacting three-dimensional inhomogeneous inclusions of arbitrary shape in an infinite space. Int. J. Numer. Meth. Eng. 87, 617–638 (2011)

    Article  MATH  Google Scholar 

  40. Zhou K., Keer L.M., Wang Q.J., Ai X., Sawamiphakdi K., Glaws P., Paire M., Che F.: Interaction of multiple inhomogeneous inclusions beneath a surface. Comput. Method. Appl. M 217, 25–33 (2012)

    Article  Google Scholar 

  41. Zhou K., Chen W.W., Keer L.M., Ai X., Sawamiphakdi K., Glaws P., Wang Q.J.: Multiple 3D inhomogeneous inclusions in a half space under contact loading. Mech. Mater. 43, 444–457 (2011)

    Article  Google Scholar 

  42. Zhou K., Chen W.W., Keer L.M., Wang Q.J.: A fast method for solving three-dimensional arbitrarily shaped inclusions in a half space. Comput. Method. Appl. M 198, 885–892 (2009)

    Article  MATH  Google Scholar 

  43. Liu S., Wang Q.J., Liu G.: A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243, 101–111 (2000)

    Article  Google Scholar 

  44. Dowson D.: A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 4, 159–170 (1962)

    Article  Google Scholar 

  45. Barus C.: Isothermals, isopiestics and isometrics relative to viscosity. Am. J. Sci. 45, 87–96 (1893)

    Article  Google Scholar 

  46. Venner C.H., ten Napel W.E.: Multilevel solution of the elastohydrodynamically lubricated circular contact problem part 2: smooth surface results. Wear 152, 369–381 (1992)

    Article  Google Scholar 

  47. Venner C.H., ten Napel W.E.: Multilevel solution of the elastohydrodynamically lubricated circular contact problem part I: theory and numerical algorithm. Wear 152, 351–367 (1992)

    Article  Google Scholar 

  48. Venner C.H., Lubrecht A.A.: Multi-Level Methods in Lubrication. Materials & Mechanical. Elsevier, Amsterdam (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Zhou, K. Elastohydrodynamic lubrication modeling for materials with multiple cracks. Acta Mech 225, 3395–3408 (2014). https://doi.org/10.1007/s00707-014-1145-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1145-x

Keywords

Navigation