Skip to main content
Log in

Bending and vibration analysis of generalized gradient elastic plates

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The governing equations of motion of generalized gradient Kirchhoff and Mindlin plates are derived on the basis of the generalized gradient elasticity with both stress and strain gradient parameters. The present plate models incorporate two material length scale parameters that can capture the size effect. The proposed models are capable of dealing with size-dependent plates at nanoscale dimension with complex geometries and boundary conditions with the help of Hamilton’s principle. The static bending and free vibration of a rectangular simply supported all around generalized gradient Kirchhoff and Mindlin plates are solved analytically using Navier’s solution. A circular gradient elastic plate, clamped all around, is also analyzed under linear static loading. Finally, the present solutions are discussed in relation to their corresponding conventional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417 (1965)

    Article  Google Scholar 

  2. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. An. 16, 51 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  3. Toupin R.: Elastic materials with couple-stresses. Arch. Ration. Mech. An. 11, 385 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aifantis E.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30, 1279 (1992)

    Article  MATH  Google Scholar 

  5. Eringen A.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)

    Article  Google Scholar 

  6. Gurtin M.E., Ian Murdoch A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. An. 57, 291 (1975)

    Article  MATH  Google Scholar 

  7. Yang F., Chong A.C.M., Lam D.C.C, Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731 (2002)

    Article  MATH  Google Scholar 

  8. Askes H., Suiker A.S.J., Sluys L.J.: A classification of higher-order strain-gradient models—linear analysis. Arch. Appl. Mech. 72, 171 (2002)

    Article  MATH  Google Scholar 

  9. Papargyri-Beskou S., Tsepoura K.G., Polyzos D., Beskos D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385 (2003)

    Article  MATH  Google Scholar 

  10. Giannakopoulos A.E., Stamoulis K.: Structural analysis of gradient elastic components. Int. J. Solids Struct. 44, 3440 (2007)

    Article  MATH  Google Scholar 

  11. Narendar S.: Ultrasonic wave characteristics of nanorods via nonlocal strain gradient models. J. Appl. Phys. 107, 084312 (2010)

    Article  Google Scholar 

  12. Wang L., Hu H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  13. Wang L., Guo W., Hu H.: Group velocity of wave propagation in carbon nanotubes. P. R. Soc. A-Math. Phys. 464, 1423 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Challamel N., Wang C.M.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Article  Google Scholar 

  15. Papargyri-Beskou S., Beskos D.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625 (2008)

    Article  MATH  Google Scholar 

  16. Papargyri-Beskou S., Polyzos D., Beskos D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751 (2009)

    Article  MATH  Google Scholar 

  17. Jafari S.B., Malekfar R., Khadem S.E.: Modeling of the microstructure of carbon nanotube with two nonlocal elasticity theories. J. Appl. Phys. 111, 034315 (2012)

    Article  Google Scholar 

  18. Wang L., Hu H., Guo W.: Validation of the non-local elastic shell model for studying longitudinal waves in single-walled carbon nanotubes. Nanotechnology 17, 1408 (2006)

    Article  Google Scholar 

  19. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305 (2003)

    Article  Google Scholar 

  20. Wang Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301 (2005)

    Article  Google Scholar 

  21. Sudak L.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281 (2003)

    Article  Google Scholar 

  22. Duan W.H., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    Article  Google Scholar 

  23. Lu P., Lee H.P., Lu C., Zhang P.Q.: Application of nonlocal beam models for carbon nanotubes. Int. J. Solids Struct. 44, 5289 (2007)

    Article  MATH  Google Scholar 

  24. Hu Y.-G., Liew K.M., Wang Q., He X.Q., Yakobson B.I.: Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids. 56, 3475 (2008)

    Article  MATH  Google Scholar 

  25. Wang C.M., Zhang Y.Y., He X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)

    Article  Google Scholar 

  26. Murmu T., Pradhan S.C.: Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity. J. Appl. Phys. 106, 104301 (2009)

    Article  Google Scholar 

  27. Li X.-F., Wang B.-L.: Vibrational modes of Timoshenko beams at small scales. Appl. Phys. Lett. 94, 101903 (2009)

    Article  Google Scholar 

  28. Reddy J.N.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  29. Lim C.W.: Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J. Appl. Phys. 101, 054312 (2007)

    Article  Google Scholar 

  30. Lu P., Zhang P.Q., Lee H.P., Wang C.M., Reddy J.N.: Non-local elastic plate theories. P. R. Soc. A-Math. Phy. 463, 3225 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Askes H., Aifantis E.C.: Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys. Rev. B 80, 195412 (2009)

    Article  Google Scholar 

  32. Shen J., Wu J.X., Song J., Li X.F., Lee K.Y.: Flexural waves of carbon nanotubes based on generalized gradient elasticity. Phys. Status Solidi B 249, 50 (2012)

    Article  Google Scholar 

  33. Askes H., Aifantis E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962 (2011)

    Article  Google Scholar 

  34. Polizzotto C.: A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121 (2012)

    Article  Google Scholar 

  35. Papargyri-Beskou S., Giannakopoulos A.E., Beskos D.E.: Variational analysis of gradient elastic flexural plates under static loading. Int. J. Solids Struct. 47, 2755 (2010)

    Article  MATH  Google Scholar 

  36. Adali S.: Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Phys. Lett. A 372, 5701 (2008)

    Article  MATH  Google Scholar 

  37. Adali S.: Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler–Bernoulli beam model. Nano Lett. 9, 1737 (2009)

    Article  Google Scholar 

  38. Adali S.: Variational principles and natural boundary conditions for multilayered orthotropic graphene sheets undergoing vibrations and based on nonlocal elastic theory. J. Theor. Appl. Mech. 49, 621 (2011)

    Google Scholar 

  39. He J.-H.: Variational approach to (2+1)-dimensional dispersive long water equations. Phys. Lett. A 335, 182 (2005)

    Article  MATH  Google Scholar 

  40. Ansari R., Sahmani S., Arash B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Chen Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XJ., Deng, ZC., Meng, JM. et al. Bending and vibration analysis of generalized gradient elastic plates. Acta Mech 225, 3463–3482 (2014). https://doi.org/10.1007/s00707-014-1142-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1142-0

Keywords

Navigation