Skip to main content
Log in

Inhomogeneous waves at the boundary of an anisotropic piezo-thermoelastic medium

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A mathematical model for the propagation of harmonic plane waves at the boundary of an anisotropic piezo-thermoelastic medium is formulated and solved for slowness surfaces. Ten slowness surfaces are defined at the boundary of the medium. These surfaces are identified with the ten complex values of vertical slowness. Eight of them are associated with propagation of four waves towards/away from the boundary. Two of the slowness surfaces do not represent the propagating phases but the stationary modes. Transmission of outgoing inhomogeneous waves in an anisotropic piezo-thermoelastic medium is studied for the incidence of one of these waves at its plane boundary. These inhomogeneous waves are characterized by their phase velocities, propagation directions and amplitude decay rates with distance from the boundary. Numerical examples are solved to explain the implementation of the derived procedure and to analyse the effects of the medium properties on wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lord H.W., Shulman Y.: The generalized dynamic theory of thermoelasticity. J. Mech. Phys. Solids. 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  3. Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  4. Sharma M.D.: Wave propagation in anisotropic generalized thermoelastic medium. J. Thermal Stress. 29, 629–642 (2006)

    Article  Google Scholar 

  5. Sharma M.D.: Existence of longitudinal and transverse waves in anisotropic thermoelastic media. Acta Mech. 209, 275–283 (2010)

    Article  MATH  Google Scholar 

  6. Bowen M.R., Chen J.P.: Acceleration waves in anisotropic thermoelastic materials with internal state variables. Acta Mech. 15, 95–104 (1972)

    Article  MATH  Google Scholar 

  7. Zhou Z.D., Yang F.P.: Plane waves in pyroelectrics with viscous effect. Acta Mech. 225, 509–521 (2014)

    Article  MATH  Google Scholar 

  8. Hou P.F.: 2D fundamental solution for orthotropic pyroelectric media. Acta Mech. 206, 225–235 (2009)

    Article  MATH  Google Scholar 

  9. Cady W.G.: Piezoelectricity. McGraw Hill, New York (1946)

    Google Scholar 

  10. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Book  Google Scholar 

  11. Mindlin, R.D.: On the Equations of Motion of Piezoelectric Crystals, Problems of Continuum Mechanics (N. I. Muskhelishvili 70th Birthday Volume) 282 (1961)

  12. Mindlin R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids struct. 10, 625–637 (1974)

    Article  MATH  Google Scholar 

  13. Nowacki W.: Some general theorems of thermopiezoelectricity. J. Thermal Stress. 1, 171–182 (1978)

    Article  MathSciNet  Google Scholar 

  14. Chandrasekharaiah D.S.: A temperature rate dependent theory of piezoelectricity. J. Therm. Stress. 7, 293–306 (1984)

    Article  MathSciNet  Google Scholar 

  15. Sharma J.N., Sidhu R.S.: On the propagation of plane harmonic waves in anisotropic generalized thermoelasticity. Int. J. Eng. Sci. 24, 1511–1516 (1986)

    Article  MATH  Google Scholar 

  16. Paul H.S., Ranganatham : Free vibrations of a pyroelectric layer of hexagonal (6 mm). J. Acoust. Soc. Am. 78, 395–397 (1985)

  17. Tang Y.Y., Xu K.: Dynamic analysis of a piezo-thermoelastic laminated plate. J. Therm. Stress. 18, 87–104 (1995)

    Article  Google Scholar 

  18. Sharma J.N., Kumar M.: Plane harmonic waves in piezo-thermoelastic materials. Int. J. Eng. Mat. Sci. 7, 434–442 (2000)

    Google Scholar 

  19. Krommer M.: On the influence of pyroelectricity upon thermally induced vibrations of piezothermoelastic plates. Acta Mech. 171, 59–73 (2004)

    Article  MATH  Google Scholar 

  20. Ashida F., Tauchert T.: Thermally induced wave propagation in a piezoelectric plate. Acta Mech. 161, 1–16 (2003)

    Article  MATH  Google Scholar 

  21. Ashida F., Tauchert T.: Plane stress problem of a piezothermoelastic plate. Acta Mech. 145, 127–134 (2000)

    Article  MATH  Google Scholar 

  22. Tauchert T.R.: Piezothermoelastic behaviour of plate of crystal class 6mm a laminated plate. J. Therm. Stress. 15, 25–37 (1992)

    Article  Google Scholar 

  23. Yang J.S., Batra R.C.: Free vibrations of a linear thermopiezoelectric body. J. Therm. Stress. 18, 247–262 (1995)

    Article  Google Scholar 

  24. Guo S.H.: The thermo-electromagnetic waves in piezoelectric solids. Acta Mech. 219, 231–240 (2011)

    Article  MATH  Google Scholar 

  25. Kuang Z.B.: Variational principles for generalized dynamical theory of thermopiezoelectricity. Acta Mech. 203, 1–11 (2009)

    Article  MATH  Google Scholar 

  26. Sharma J.N., Pal M.: Propagation of Lamb waves in a transversely isotropic piezothermoelastic plate. J. Sound Vib. 270, 587–610 (2004)

    Article  Google Scholar 

  27. Sharma J.N., Pal M., Chand D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. J. Sound Vib. 284, 227–248 (2005)

    Article  Google Scholar 

  28. Sharma J.N., Walia V., Gupta S.K.: Effect of rotation and thermal relaxation on Rayleigh waves in piezothermoelastic half space. Int. J. Mech. Sci. 50, 433–444 (2008)

    Article  MATH  Google Scholar 

  29. Sharma M.D.: Propagation of inhomogeneous waves in anisotropic piezo-thermoelastic media. Acta Mech. 215, 307–318 (2010)

    Article  MATH  Google Scholar 

  30. Synge J.L.: Elastic waves in anisotropic media. J. Math. Phys. Solids. 35, 323–334 (1957)

    MATH  MathSciNet  Google Scholar 

  31. Auld B.A.: Wave propagation and resonance in piezoelectric materials. J. Acoust. Soc. Am. 70, 1577–1585 (1981)

    Article  Google Scholar 

  32. Hayes M.: Energy flux for trains of inhomogeneous plane waves. Proc. R. Soc. Lond. Ser. A. 370, 417–429 (1980)

    Article  MATH  Google Scholar 

  33. Caviglia G., Morro A.: Inhomogeneous Waves in Solids and Fluids. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  34. Carcione J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media. Pergamon, Amsterdam (2001)

    Google Scholar 

  35. Cerveny V., Psencik I.: Plane waves in viscoelastic anisotropic media-I. Theory. Geophys. J. Int. 161, 197–212 (2005)

    Article  Google Scholar 

  36. Sharma M.D.: Inhomogeneous waves at the boundary of a generalized thermoelastic anisotropic medium. Int. J. Solids. Struct. 45, 1483–1496 (2008)

    Article  MATH  Google Scholar 

  37. Rokhlin S.I., Boland T.K., Adler L.: Reflection and refraction of elastic waves on a plane interface between two generally anisotropic media. J. Acoust. Soc. Am. 79, 906–918 (1986)

    Article  Google Scholar 

  38. Caviglia G., Morro A.: A new approach to reflection–transmission between viscoelastic half spaces. J. Acoust. Soc. Am. 106, 1666–1672 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Sukhija.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vashishth, A.K., Sukhija, H. Inhomogeneous waves at the boundary of an anisotropic piezo-thermoelastic medium. Acta Mech 225, 3325–3338 (2014). https://doi.org/10.1007/s00707-014-1139-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1139-8

Keywords

Navigation