Skip to main content
Log in

Effect of boundary vibration on the frictional behavior of a dense sheared granular layer

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We report results of 3D discrete element method simulations aiming at investigating the role of the boundary vibration in inducing frictional weakening in sheared granular layers. We study the role of different vibration amplitudes applied at various shear stress levels, for a granular layer in the stick-slip regime and in the steady-sliding regime. Results are reported in terms of friction drops and kinetic energy release associated with frictional weakening events. We find that a larger vibration amplitude induces larger frictional weakening events. The results show evidence of a threshold below which no induced frictional weakening takes place. Friction drop size is found to be dependent on the shear stress at the time of vibration. A significant increase in the ratio between the number of slipping contacts to the number of sticking contacts in the granular layer is observed for large vibration amplitudes. These vibration-induced contact rearrangements enhance particle mobilization and induce a friction drop and kinetic energy release. This observation provides some insight into the grain-scale mechanisms of frictional weakening by boundary vibration in a dense sheared granular layer. In addition to characterizing the basic physics of vibration-induced shear weakening, we are attempting to understand how a fault fails in the earth under seismic wave forcing. This is the well-known phenomenon of dynamic earthquake triggering. We believe that the granular physics are key to this understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brace W.F., Byerlee J.D.: Stick-slip as a mechanism for earthquakes. Science 153(3739), 990–992 (1966)

    Article  Google Scholar 

  2. Brace, W.F., Byerlee, J.D.: California earthquakes: why only shallow focus? Science 168(3939), 1573–1575 (1970)

  3. Johnson T., Wu F.T., Scholz C.H., Url S.: Source parameters for stick-slip and for earthquakes. Science 179(4070), 278–280 (1973)

    Article  Google Scholar 

  4. Daniels K.E., Hayman N.W.: Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113(B11), 1–13 (2008)

    Google Scholar 

  5. Hayman, N.W., Ducloué, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168(12), 2239–2257 (2011)

  6. Luding S., Clément E., Blumen A., Rajchenbach J., Duran J.: Studies of columns of beads under external vibrations. Phys. Rev. E 49, 1634 (1994)

    Article  Google Scholar 

  7. Savage H.M., Marone C.: Potential for earthquake triggering from transient deformations. J. Geophys. Res. 113, 1–15 (2008)

    Google Scholar 

  8. Janda A., Maza D., Garcimartín A., Lanuza J., Clément E.: Unjamming a granular hopper by vibration. Europhys. Lett. 87, 24002 (2009)

    Article  Google Scholar 

  9. Capozza R., Vanossi A., Vezzani A., Zapperi S.: Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103, 085502 (2009)

    Article  Google Scholar 

  10. Melhus M.F., Aranson I., Volfson D., Tsimring L.S.: Effect of noise on solid-to-liquid transition in small granular systems under shear. Phys. Rev. B 80, 041305 (2009)

    Article  Google Scholar 

  11. Jia X., Brunet T., Laurent J.: Elastic weakening of a dense granular pack by acoustic fluidization: slipping, compaction, and aging. Phys. Rev. E 84(84), 020301(R) (2011)

    Article  Google Scholar 

  12. van der Elst N., Brodsky E.E., Le Bas P.-Y., Johnson P. A.: Auto-acoustic compaction in steady shear flows: experimental evidence for suppression of shear dilatancy by internal acoustic vibration. J. Geophys. Res. 117, B09314 (2012)

    Google Scholar 

  13. Pollitz F., Stein R., Sevilgen V., Bürgmann R.: The 11 April 2012 east indian ocean earthquake triggered large aftershocks worldwide. Nature 490, 250–253 (2012)

    Article  Google Scholar 

  14. Shelly D.R., Peng Z., Hill D.P., Aiken C.: Triggered creep as a possible mechanism for delayed dynamic triggering of tremor and earthquakes. Nat. Geosci. 4(6), 384–388 (2011)

    Article  Google Scholar 

  15. Velasco A. A., Hernandez S., Parsons T., Pankow K.: Global ubiquity of dynamic earthquake triggering. Nat. Geosci. 1, 375–379 (2009)

    Article  Google Scholar 

  16. Marsan D., Lengline O.: Extending earthquakes’ reach through cascading. Science 319, 1076–1079 (2008)

    Article  Google Scholar 

  17. Gomberg J., Bodin P., Larson K., Dragert H.: Earthquake nucleation by transient deformations caused by the m =  7.9 Denali, Alaska, earthquake. Nature 427, 621–624 (2004)

    Article  Google Scholar 

  18. Gomberg J., Reasenberg P., Bodin P., Harris R.: Earthquake triggering by seismic waves following the landers and hector mine earthquakes. Nature 411(6836), 462–466 (2001)

    Article  Google Scholar 

  19. Freed A.M.: Earthquake triggering by static, dynamic, and postseismic stress transfer. Annu. Rev. Earth Planet. Sci. 33, 335–367 (2005)

    Article  Google Scholar 

  20. Falk M., Langer J.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192–7205 (1998)

    Article  Google Scholar 

  21. DiDonna B.A., Lubensky T.C.: Nonaffine correlations in random elastic media. Phys. Rev. E 72, 066619 (2005)

    Article  Google Scholar 

  22. Griffa M., Daub E.G., Guyer R.A., Johnson P.A., Marone C., Carmeliet J.: Vibration-induced slip in sheared granular layers and the micromechanics of dynamic earthquake triggering. Europhys. Lett. 96, 14001 (2011)

    Article  Google Scholar 

  23. Griffa M., Ferdowsi B., Daub E., Guyer R., Johnson P., Marone C., Carmeliet J.: Meso-mechanical analysis of deformation characteristics for dynamically triggered slip in a granular medium. Philos. Mag. 92, 3520–3539 (2012)

    Article  Google Scholar 

  24. Griffa M., Ferdowsi B., Daub E., Guyer R., Johnson P., Marone C., Carmeliet J.: Influence of vibration amplitude on dynamic triggering of slip in sheared granular layers. Phys. Rev. E 87, 012205 (2013)

    Article  Google Scholar 

  25. Schoepfer M.P.J., Abe S., Childs C., Walsh J.: The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from dem modelling. Int. J. Rock Mech. Min. Sci. 46, 250–261 (2009)

    Article  Google Scholar 

  26. Johnson P.A., Savage H., Knuth M., Gomberg J., Marone C.: Effects of acoustic waves on stick-slip in granular media and implications for earthquakes. Nature 451(7174), 57–60 (2008)

    Article  Google Scholar 

  27. Place D., Mora P.: The lattice solid model to simulate the physics of rocks and earthquakes: incorporation of friction. Comput. Phys. 150, 332–372 (1999)

    Article  MATH  Google Scholar 

  28. Wang Y., Abe S., Latham S., Mora P.: Implementation of particle-scale rotation in the 3-D lattice solid model. Pure Appl. Geophys. 163, 1769–1785 (2006)

    Article  Google Scholar 

  29. Mair K., Abe S.: 3d numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization. Earth Planet. Sci. Lett. 274, 72–81 (2008)

    Article  Google Scholar 

  30. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  31. Aharonov E., Sparks D.: Rigidity phase transition in granular packings. Phys. Rev. E 60, 6890–6896 (1999)

    Article  Google Scholar 

  32. Wang Y.: A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations. Acta Geotech. 4, 117–127 (2009)

    Article  Google Scholar 

  33. Ruina A.: Slip instability and state variable friction laws. J. Geophys. Res.: Solid Earth 88, 10359–10370 (1983)

    Article  Google Scholar 

  34. Palmer A.C., Rice J.R.: The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973)

    Article  MATH  Google Scholar 

  35. Ida Y.: Cohesive force across the tip of a longitudinal-shear crack and griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972)

    Article  Google Scholar 

  36. Johnson P., Carpenter B., Knuth M., Kaproth B., Le Bas P.-Y., Daub E., Marone C.: Nonlinear dynamical triggering of slow slip on simulated earthquake faults with implications to earth. J. Geophys. Res. 117, 1–9 (2012)

    Google Scholar 

  37. Gomberg J., Johnson P.A.: Dynamic triggering of earthquakes. Nature 437, 830 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ferdowsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferdowsi, B., Griffa, M., Guyer, R.A. et al. Effect of boundary vibration on the frictional behavior of a dense sheared granular layer. Acta Mech 225, 2227–2237 (2014). https://doi.org/10.1007/s00707-014-1136-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1136-y

Keywords

Navigation