Skip to main content
Log in

Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this review, the phenomenology of hysteresis is discussed, including both empirical and mathematical models, and some examples are presented. The focus lies on soil-moisture hysteresis, where the capillary pressure exhibits different values depending on the initial state of saturation. An historical overview is given of the investigation of this phenomenon, of various empirical models, and also of some mathematical approaches to soil-moisture hysteresis. All these studies are aimed at accurately fitting experimental results—not only the main hysteresis curves but also the inner hysteresis curves that occur upon re-wetting and re-drying. Finally, a comparison is made to another field in which hysteresis appears, the deformation of pseudoelastic bodies such as shape memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albers B.: Coupling of adsorption and diffusion in porous and granular materials. A 1-D example of the boundary value problem. Arch. Appl. Mech. 70, 519–531 (2000)

    Article  MATH  Google Scholar 

  2. Albers, B.: Modeling and numerical analysis of wave propagation in saturated and partially saturated porous media, vol. 48 of Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. Shaker Verlag, Aachen. Habilitation thesis (2010)

  3. Albers B.: Linear elastic wave propagation in unsaturated sands, silts, loams and clays. Transp. Porous Media 86, 537–557 (2011)

    Article  Google Scholar 

  4. Arya L.M., Paris J.F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. 45, 1023–1030 (1981)

    Article  Google Scholar 

  5. Bagagiolo F., Visintin A.: Hysteresis in filtration through porous media. Z. Anal. Anwendungen 19(4), 977–998 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bear J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    MATH  Google Scholar 

  7. Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1991)

    Book  MATH  Google Scholar 

  8. Bear, J., Verruijt, A.: Modeling Flow in the Unsaturated Zone, chap. 5, pp. 123–152. Reidel, Dordrecht (1987)

  9. Beliaev A.Y., Hassanizadeh S.M.: A theoretical model of hysteresis and dynamic effects in the capillary relation for two-phase flow in porous media. Transp. Porous Media 43, 487–510 (2001)

    Article  MathSciNet  Google Scholar 

  10. Bertotti G., Mayergoyz I.D.: The Science of Hysteresis, vol. 1: Mathematical Modeling and Applications. Elsevier/Academic Press, Amsterdam (2006)

    Google Scholar 

  11. Bertotti G., Mayergoyz I.D.: The Science of Hysteresis, vol. 2: Physical Modeling, Micromagnetics, and Magnetization Dynamics. Elsevier/Academic Press, Amsterdam (2006)

    Google Scholar 

  12. Bertotti G., Mayergoyz I.D.: The Science of Hysteresis, vol. 3: Hysteresis in Materials. Elsevier/Academic Press, Amsterdam (2006)

    Google Scholar 

  13. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low frequency range, II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 168–178, 179–191 (1956)

    Google Scholar 

  14. Brillouin, M.: Déformations permanentes et Thérmodynamique. Comptes rendus hebdomadaires des séances de l’Académie des sciences 106, 416–418, 482–485, 537–540, 589–592 (1888)

  15. Brokate M., Sprekels J.: Hysteresis and Phase Transitions. Springer, NY (1996)

    Book  MATH  Google Scholar 

  16. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. In: Corey, A.T., Dils, R.E., Yevdjevich, V.M. (eds.) Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964)

  17. Buckley S., Leverett M.: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  18. Charlaix E., Crassous J.: Adhesion forces between wetted solid surfaces. J. Chem. Phys. 122, 184701 (2005)

    Article  Google Scholar 

  19. Chen J., Hopmans J.W., Grismer M.E.: Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Adv. Water Resour. 22(5), 479–493 (1999)

    Article  Google Scholar 

  20. Corey A.T.: Mechanics of Heterogeneous Fluids in Porous Media. Water Resources Publ., Fort Collins (1977)

    Google Scholar 

  21. Cornelis W.M., Ronsyn J., Meirvenne M.V., Hartmann R.: Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. 45, 638–648 (2001)

    Article  Google Scholar 

  22. Crassous J., Ciccotti M., Charlaix E.: Capillary force between wetted nanometric contacts and its application to atomic force microscopy. Langmuir 27, 3468–3473 (2011)

    Article  Google Scholar 

  23. Cueto-Felgueroso L., Juanes R.: Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101, 244504 (2008)

    Article  Google Scholar 

  24. DiCarlo, D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40(4), W04215 (2004). doi:10.1029/2003WR002670

  25. DiCarlo, D.A., Juanes, R., LaForce, T., Witelski, T.P.: Nonmonotonic traveling wave solutions of infiltration into porous media. Water Resour. Res. 44(2), W02406 (2008). doi:10.1029/2007WR005975

  26. Doster F., Hilfer R.: Generalized Buckley–Leverett theory for two-phase flow in porous media. New J. Phys. 13, 123030 (2011)

    Article  Google Scholar 

  27. Doster F., Hönig O., Hilfer R.: Horizontal flow and capillarity-driven redistribution in porous media. Phys. Rev. 86, 016317 (2012)

    Google Scholar 

  28. Doster F., Zegeling P.A., Hilfer R.: Numerical solutions of a generalized theory for macroscopic capillarity. Phys. Rev. 81, 036307 (2010)

    Google Scholar 

  29. Duhem, P.: Sur les déformations permanentes et l‘hystérésis. Mémoires présentées par divers savants étrangères et Mémoires couronnées par l‘Académie de Belgique, Classe des Sciences, tome LIV. 13 octobre (1894)

  30. Duhem, P.: Sur les déformations permanentes et l‘hystérésis—Deuxième mémoire: les modifications permanentes du sourfre. Mémoires présentées par divers savants étrangères et Mémoires couronnées par l‘Académie de Belgique, Classe des Sciences, tome LIV. 11 mars (1895)

  31. Duhem, P.: Sur les déformations permanentes et l‘hystérésis—Troisième mémoire: Théorie générale des modifications permanentes. Mémoires présentées par divers savants étrangères et Mémoires couronnées par l‘Académie de Belgique, Classe des Sciences, tome LIV. 3 août (1895)

  32. Enderby J.A.: The domain model of hysteresis, Part 1. Independent domains. Trans. Faraday Soc. 51, 835–848 (1955)

    Article  Google Scholar 

  33. Enderby J.A.: The domain model of hysteresis, Part 2. Interacting domains. Trans. Faraday Soc. 52, 106–120 (1956)

    Article  Google Scholar 

  34. Everett D.H.: A general approach to hysteresis. Part 3. A formal treatment of the independent domain model of hysteresis. Trans. Faraday Soc. 50, 1077–1096 (1954)

    Article  Google Scholar 

  35. Everett D.H.: A general approach to hysteresis. Part 4. An alternative formulation of the domain model. Trans. Faraday Soc. 51, 1551–1557 (1955)

    Article  Google Scholar 

  36. Everett D.H., Smith F.W.: A general approach to hysteresis. Part 2. Development of the domain theory. Trans. Faraday Soc. 50, 187–197 (1954)

    Article  Google Scholar 

  37. Everett D.H., Whitton W.I.: A general approach to hysteresis. Trans. Faraday Soc. 48, 749–752 (1952)

    Article  Google Scholar 

  38. Ewing J.A.: Experimental researches in magnetism. R. Soc. Lond. Philos. Trans. Ser. I 176, 523–640 (1885)

    Article  Google Scholar 

  39. Ewing, J.A.: Magnetic Induction in Iron and Other Metals. “The Electrician” Series. D. Van Nostrand Company, Princeton (1892)

  40. Flynn, D.: Modelling the flow of water through multiphase porous media with the Preisach model. Ph.D. thesis, University College Cork (2008)

  41. Flynn D., McNamara H., O’Kane J.P., Pokrovskii A.: Application of the Preisach model to soil-moisture hysteresis. In: Bertotti, M. (ed.) The Science of Hysteresis, vol. 3, pp. 689. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  42. Flynn D., Rasskazov O.: On the integration of an ode involving the derivative of a Preisach nonlinearity. J. Phys. Conf. Ser. 22, 43 (2005)

    Article  Google Scholar 

  43. Fredlund D.G., Rahardjo H.: Soil Mechanics for Unsaturated Soils. Wiley, London (1993)

    Book  Google Scholar 

  44. Fredlund M.D., Wilson G.W., Fredlund D.G.: Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 39, 1103–1117 (2002)

    Article  Google Scholar 

  45. Geiger S.L., Durnford D.S.: Infiltration in homogeneous sands and a mechanistic model of unstable flow. Soil Sci. Soc. Am. J. 64, 460–469 (2000)

    Article  Google Scholar 

  46. Haines W.B.: Studies in the physical properties of soil: V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20, 97–116 (1930)

    Article  Google Scholar 

  47. Hassanizadeh S.M., Gray W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  48. Haverkamp, R., Reggiani, P., Ross, P.J., Parlange, J.-Y.: Soil water hysteresis prediction model based on theory and geometric scaling. In: Raats, P.A.C., Smiles, D., Warrick, A.W. (eds.) Environmental Mechanics, Water, Mass and Engergy Transfer in the Biosphere, pp. 213–246. American Geophysical Union, Washington (2002)

  49. Helmig R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Heidelberg (1997)

    Book  Google Scholar 

  50. Herminghaus S.: Dynamics of wet granular matter. Adv. Phys. 54, 221–261 (2005)

    Article  Google Scholar 

  51. Hilfer R.: Capillary pressure, hysteresis and residual saturation in porous media. Phys. A 359, 119–128 (2006)

    Article  Google Scholar 

  52. Hilfer R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. 73, 016307 (2006)

    Google Scholar 

  53. Hilfer R.: Macroscopic capillarity without a constitutive capillary pressure function. Phys. A 371, 209–225 (2006)

    Article  Google Scholar 

  54. Hilfer R., Doster F.: Percolation as a basic concept for macroscopic capillarity. Transp. Porous Media 82, 507–519 (2010)

    Article  MathSciNet  Google Scholar 

  55. Hilfer, R., Doster, F., Zegeling, P.A.: Nonmonotone saturation profiles for hydrostatic equilibrium in homogeneous porous media. Vadose Zone Journal 11(3), vzj2012.0021 (2012). doi:10.2136/vzj2012.0021

  56. Hill, R. (ed.): The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1964)

  57. Iverson R.M., LaHusen R.G.: Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246(4931), 796–799 (1989)

    Article  Google Scholar 

  58. Iveson S.M., Litster J.D., Hapgood K., Ennis B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117, 3–39 (2001)

    Article  Google Scholar 

  59. Jaynes D.B.: Comparison of soil-water hysteresis models. J. Hydrol. 75, 287–299 (1984)

    Article  Google Scholar 

  60. Kool J.B., Parker J.C.: Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23(1), 105–114 (1987)

    Article  Google Scholar 

  61. Krasnosel’skii M.A., Pokrovskii A.V.: Systems with Hysteresis. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  62. Krejci, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto International Series in Mathematical Science and Applications, vol. 8. Gakkotosho, Tokyo (1996)

  63. Kuczma, M.: Application of Variational Inequalities in the Mechanics of Plastic Flow and Martensitic Phase Transformations. Politechnika Poznanska, Poznan. Habilitation thesis (1999)

  64. Lu N., Likos W.: Unsaturated Soil Mechanics. Wiley, Hoboken (2004)

    Google Scholar 

  65. Mayergoyz I.: Mathematical Models of Hysteresis. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  66. Mitarai N., Nori F.: Wet granular materials. Adv. Phys. 55, 1–45 (2006)

    Article  Google Scholar 

  67. Müller I., Wilmanski K.: A model for phase transition in pseudoelastic bodies. Il Nuovo Cimento 57B(2), 283–318 (1980)

    Article  Google Scholar 

  68. Morel-Seytoux, H.J. (ed.): Unsaturated Flow in Hydrologic Modeling. Kluwer, Dordrecht (1989)

  69. Mualem Y.: Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resour. Res. 9(5), 1324–1331 (1973)

    Article  Google Scholar 

  70. Mualem Y.: A conceptual model of hysteresis. Water Resour. Res. 10, 514–520 (1974)

    Article  Google Scholar 

  71. Mualem Y.: A modified dependent-domain theory of hysteresis. Soil Sci. 137(5), 283–291 (1984)

    Article  Google Scholar 

  72. Mualem Y., Beriozkin A.: Application of the “proportionate partitioning” method suggested by Poulovassilis and Kargas (2000) for determination of the domain distribution function. Transp. Porous Media 71, 253–264 (2008)

    Article  Google Scholar 

  73. Mualem Y., Beriozkin A.: General scaling rules of the hysteretic water retention function based on mualem’s domain theory. Eur. J. Soil Sci. 60(4), 652–661 (2009)

    Article  Google Scholar 

  74. Mualem Y., Beriozkin A.: Response to Parlange et al. by Y. Mualem & A. Beriozkin. Eur. J. Soil Sci. 61(6), 1114–1117 (2010)

    Article  Google Scholar 

  75. Mualem Y., Dagan G.: A dependent domain model of capillary hysteresis. Water Resour. Res. 11(3), 452–460 (1975)

    Article  Google Scholar 

  76. Néel L.: Théories des lois d’aimanation de Lord Rayleigh, I: Les deplacements d’une paroi isolee. Cahiers de Physique 12(1), 1–20 (1942)

    Google Scholar 

  77. Néel L.: Théories des lois d’aimanation de Lord Rayleigh, II: Multiples domaines et champ coercitif. Cahiers de Physique 13(18), 19–30 (1943)

    Google Scholar 

  78. Nieber J.L., Dautov R.Z., Egorov A.G., Sheshukov A.Y.: Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. In: Das, D., Hassanizadeh , S. (eds.) Upscaling Multiphase Flow in Porous Media, pp. 147–172. Springer, Amsterdam (2005)

    Chapter  Google Scholar 

  79. Parker J.C., Lenhard R.J.: A model for hysteretic constitutive relations governing multiphase flow, 1. Saturation–pressure relations. Water Resour. Res. 23(12), 2187–2196 (1987)

    Article  Google Scholar 

  80. Parlange J.-Y.: Capillary hysteresis and the relationship between drying and wetting curves. Water Resour. Res. 12(2), 224–228 (1976)

    Article  Google Scholar 

  81. Parlange J.-Y., Haverkamp R., Sander G., Hogarth W., Braddock R.: Comments on ‘general scaling rules of the hysteretic water retention function based on mualem’s domain theory’ by Y. Mualem & A. Beriozkin. Eur. J. Soil Sci. 61(6), 1113–1114 (2010)

    Article  Google Scholar 

  82. Philip J.R.: Similarity hypothesis for capillary hysteresis in porous materials. J. Geophys. Res. 69(8), 1553–1562 (1964)

    Article  Google Scholar 

  83. Philip J.R.: Horizontal redistribution with capillary hysteresis. Water Resour. Res. 27(7), 1459–1469 (1991)

    Article  MathSciNet  Google Scholar 

  84. Pietruszczak, S., Pande, G.N.: On the mechanical response of partially saturated soils at low and high degrees of saturation. In: Pande, G.N., Pietruszczak, S. (eds.) Numerical Models in Geomechanics, vol. 5. Balkema, Rotterdam (1995)

  85. Poulovassilis, A., Kargas, G., Kerkides, P.: Comments on the paper ‘Application of the “Proportionate Partitioning” method suggested by Poulovassilis and Kargas (2000) for determination of the domain distribution function’ by Mualem and Beriozkin (2008). Transp. Porous Media 75, 223–226 (2008)

  86. Poulovassillis A.: Hysteresis of pore water, an application of the concept of independent domains. Soil Sci. 93, 405–412 (1962)

    Article  Google Scholar 

  87. Poulovassillis A.: Hysteresis of pore water in granular porous bodies. Soil Sci. 109(1), 5–12 (1970)

    Article  Google Scholar 

  88. Poulovassillis A., Child E.C.: The hysteresis of pore water: the non-independence of domains. Soil Sci. 112, 301–312 (1971)

    Article  Google Scholar 

  89. Poulovassillis A., Kargas G.: A note on calculating hysteretic behavior. Soil Sci. Soc. Am. J. 64, 1947–1950 (2000)

    Article  Google Scholar 

  90. Preisach F.: Über die magnetische Nachwirkung. Zeitschrift für Physik 94, 277–302 (1935)

    Article  Google Scholar 

  91. Prunty L., Casey F.X.M.: Soil water retention curve description using a flexible smooth function. Vadose Zone J. 1(1), 179–185 (2002)

    Article  Google Scholar 

  92. Restagno F., Bocquet L., Crassous J., Charlaix E.: Slow kinetics of capillary condensation in confined geometry: experiment and theory. Colloids Surf. A Physicochem. Eng. Asp. 206, 69–77 (2002)

    Article  Google Scholar 

  93. Richefeu V., Youssoufi M.S.E., Radjai F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304 (2006)

    Article  Google Scholar 

  94. Roubiček, T.: Models of microstructure evolution in shape memory alloys. In: Castañeda, P., Telega, J., Gambin, B. (eds.) Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials, vol. 170 of NATO Science Series II: Mathematics, Physics and Chemistry. Springer, Amsterdam, pp. 269–304 (2005)

  95. Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, from Classical Methods to Modern Approaches, 2nd edn. WILEY-VCH Verlag, Weinheim (2011)

  96. Schiffer P.: Granular physics: a bridge to sandpile stability. Nat. Phys. 1, 21–22 (2005)

    Article  Google Scholar 

  97. Scott, P.S., Farquhar, G.J., Kouwen, N.: Hysteretic effects on net infiltration. In: Advances in infiltration, pp. 163–171 (1983)

  98. Sheta, H.: Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hysterese-Effekten. Ph.D. thesis, Universität Stuttgart (in German) (1999)

  99. Stewart K.H.: Ferromagnetic Domains. Cambridge Monographs on Physics. Cambridge University Press, (1954)

  100. Topp G.C.: Soil water hysteresis in silt loam and clay loam soils. Water Resour. Res. 7(4), 914–920 (1971)

    Article  Google Scholar 

  101. Topp G.C., Miller E.E.: Hysteretic moisture characteristics and hydraulic conductivities for glass-beads media. Soil Sci. Soc. Am. Proc. 30, 156–162 (1966)

    Article  Google Scholar 

  102. van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  103. Vereecken H., Maes J., Feyen J., Darius P.: Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 148(6), 389–403 (1989)

    Article  Google Scholar 

  104. Visintin A.: Differential Models of Hysteresis. Springer, New York (1994)

    Book  MATH  Google Scholar 

  105. Vogel T., Gerke H.H., Zhang R., Van Genuchten M.T.: Modeling flow and transport in a two-dimensional dual- permeability system with spatially variable hydraulic properties. J. Hydrol. 238, 78–89 (2000)

    Article  Google Scholar 

  106. Wheeler S.J.: A conceptual model for soils containing large gas bubbles. Géotechnique 38, 389–397 (1988)

    Article  Google Scholar 

  107. Wilmanski K.: Propagation of the interface in the stress-induced austenite–martensite transformation. Ingenieur-Archiv 53, 291–301 (1983)

    Article  MATH  Google Scholar 

  108. Wilmanski, K.: On pattern formation in stress-induced martensitic transformation. In: Muschik, G.M.W. (ed.) Nonlinear Thermodynamical Processes in Continua, TUB-Dokumentationen, Heft 61, Berlin, pp. 88–105 (1992))

  109. Wilmanski, K.: Note on the Model of Pseudoelastic Hysteresis. Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, pp. 207–221 (1993)

  110. Wilmanski K.: Symmetric model of stress–strain hysteresis loops in shape memory alloys. Int. J. Eng. Sci. 31(8), 1121–1138 (1993)

    Article  MATH  Google Scholar 

  111. Wilmanski K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media 32, 21–47 (1998)

    Article  Google Scholar 

  112. Wilmanski K.: On a homogeneous adsorption in porous materials. ZAMM 81, 119–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  113. Wood, D.M.: The behaviour of partly saturated soils: a review. Cambridge University Report, Engineering Department (1979)

  114. Wösten J.H.M., Pachepsky Y.A., Rawls W.J.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristic. J. Hydrol. 251, 123–150 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Albers.

Additional information

In memory of Krzysztof Wilmanski—my friend and teacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albers, B. Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review. Acta Mech 225, 2163–2189 (2014). https://doi.org/10.1007/s00707-014-1122-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1122-4

Keywords

Navigation