Acta Mechanica

, Volume 225, Issue 8, pp 2163–2189 | Cite as

Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review



In this review, the phenomenology of hysteresis is discussed, including both empirical and mathematical models, and some examples are presented. The focus lies on soil-moisture hysteresis, where the capillary pressure exhibits different values depending on the initial state of saturation. An historical overview is given of the investigation of this phenomenon, of various empirical models, and also of some mathematical approaches to soil-moisture hysteresis. All these studies are aimed at accurately fitting experimental results—not only the main hysteresis curves but also the inner hysteresis curves that occur upon re-wetting and re-drying. Finally, a comparison is made to another field in which hysteresis appears, the deformation of pseudoelastic bodies such as shape memory alloys.


Porous Medium Hysteresis Loop Shape Memory Alloy Capillary Pressure Hysteretic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers B.: Coupling of adsorption and diffusion in porous and granular materials. A 1-D example of the boundary value problem. Arch. Appl. Mech. 70, 519–531 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Albers, B.: Modeling and numerical analysis of wave propagation in saturated and partially saturated porous media, vol. 48 of Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin. Shaker Verlag, Aachen. Habilitation thesis (2010)Google Scholar
  3. 3.
    Albers B.: Linear elastic wave propagation in unsaturated sands, silts, loams and clays. Transp. Porous Media 86, 537–557 (2011)CrossRefGoogle Scholar
  4. 4.
    Arya L.M., Paris J.F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. 45, 1023–1030 (1981)CrossRefGoogle Scholar
  5. 5.
    Bagagiolo F., Visintin A.: Hysteresis in filtration through porous media. Z. Anal. Anwendungen 19(4), 977–998 (2000)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Bear J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)MATHGoogle Scholar
  7. 7.
    Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer, Dordrecht (1991)CrossRefMATHGoogle Scholar
  8. 8.
    Bear, J., Verruijt, A.: Modeling Flow in the Unsaturated Zone, chap. 5, pp. 123–152. Reidel, Dordrecht (1987)Google Scholar
  9. 9.
    Beliaev A.Y., Hassanizadeh S.M.: A theoretical model of hysteresis and dynamic effects in the capillary relation for two-phase flow in porous media. Transp. Porous Media 43, 487–510 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Bertotti G., Mayergoyz I.D.: The Science of Hysteresis, vol. 1: Mathematical Modeling and Applications. Elsevier/Academic Press, Amsterdam (2006)Google Scholar
  11. 11.
    Bertotti G., Mayergoyz I.D.: The Science of Hysteresis, vol. 2: Physical Modeling, Micromagnetics, and Magnetization Dynamics. Elsevier/Academic Press, Amsterdam (2006)Google Scholar
  12. 12.
    Bertotti G., Mayergoyz I.D.: The Science of Hysteresis, vol. 3: Hysteresis in Materials. Elsevier/Academic Press, Amsterdam (2006)Google Scholar
  13. 13.
    Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low frequency range, II. Higher frequency range. J. Acoust. Soc. Am. 28(2), 168–178, 179–191 (1956)Google Scholar
  14. 14.
    Brillouin, M.: Déformations permanentes et Thérmodynamique. Comptes rendus hebdomadaires des séances de l’Académie des sciences 106, 416–418, 482–485, 537–540, 589–592 (1888)Google Scholar
  15. 15.
    Brokate M., Sprekels J.: Hysteresis and Phase Transitions. Springer, NY (1996)CrossRefMATHGoogle Scholar
  16. 16.
    Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. In: Corey, A.T., Dils, R.E., Yevdjevich, V.M. (eds.) Hydrology Papers, vol. 3. Colorado State University, Fort Collins (1964)Google Scholar
  17. 17.
    Buckley S., Leverett M.: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)CrossRefGoogle Scholar
  18. 18.
    Charlaix E., Crassous J.: Adhesion forces between wetted solid surfaces. J. Chem. Phys. 122, 184701 (2005)CrossRefGoogle Scholar
  19. 19.
    Chen J., Hopmans J.W., Grismer M.E.: Parameter estimation of two-fluid capillary pressure–saturation and permeability functions. Adv. Water Resour. 22(5), 479–493 (1999)CrossRefGoogle Scholar
  20. 20.
    Corey A.T.: Mechanics of Heterogeneous Fluids in Porous Media. Water Resources Publ., Fort Collins (1977)Google Scholar
  21. 21.
    Cornelis W.M., Ronsyn J., Meirvenne M.V., Hartmann R.: Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. 45, 638–648 (2001)CrossRefGoogle Scholar
  22. 22.
    Crassous J., Ciccotti M., Charlaix E.: Capillary force between wetted nanometric contacts and its application to atomic force microscopy. Langmuir 27, 3468–3473 (2011)CrossRefGoogle Scholar
  23. 23.
    Cueto-Felgueroso L., Juanes R.: Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101, 244504 (2008)CrossRefGoogle Scholar
  24. 24.
    DiCarlo, D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40(4), W04215 (2004). doi: 10.1029/2003WR002670
  25. 25.
    DiCarlo, D.A., Juanes, R., LaForce, T., Witelski, T.P.: Nonmonotonic traveling wave solutions of infiltration into porous media. Water Resour. Res. 44(2), W02406 (2008). doi: 10.1029/2007WR005975
  26. 26.
    Doster F., Hilfer R.: Generalized Buckley–Leverett theory for two-phase flow in porous media. New J. Phys. 13, 123030 (2011)CrossRefGoogle Scholar
  27. 27.
    Doster F., Hönig O., Hilfer R.: Horizontal flow and capillarity-driven redistribution in porous media. Phys. Rev. 86, 016317 (2012)Google Scholar
  28. 28.
    Doster F., Zegeling P.A., Hilfer R.: Numerical solutions of a generalized theory for macroscopic capillarity. Phys. Rev. 81, 036307 (2010)Google Scholar
  29. 29.
    Duhem, P.: Sur les déformations permanentes et l‘hystérésis. Mémoires présentées par divers savants étrangères et Mémoires couronnées par l‘Académie de Belgique, Classe des Sciences, tome LIV. 13 octobre (1894)Google Scholar
  30. 30.
    Duhem, P.: Sur les déformations permanentes et l‘hystérésis—Deuxième mémoire: les modifications permanentes du sourfre. Mémoires présentées par divers savants étrangères et Mémoires couronnées par l‘Académie de Belgique, Classe des Sciences, tome LIV. 11 mars (1895)Google Scholar
  31. 31.
    Duhem, P.: Sur les déformations permanentes et l‘hystérésis—Troisième mémoire: Théorie générale des modifications permanentes. Mémoires présentées par divers savants étrangères et Mémoires couronnées par l‘Académie de Belgique, Classe des Sciences, tome LIV. 3 août (1895)Google Scholar
  32. 32.
    Enderby J.A.: The domain model of hysteresis, Part 1. Independent domains. Trans. Faraday Soc. 51, 835–848 (1955)CrossRefGoogle Scholar
  33. 33.
    Enderby J.A.: The domain model of hysteresis, Part 2. Interacting domains. Trans. Faraday Soc. 52, 106–120 (1956)CrossRefGoogle Scholar
  34. 34.
    Everett D.H.: A general approach to hysteresis. Part 3. A formal treatment of the independent domain model of hysteresis. Trans. Faraday Soc. 50, 1077–1096 (1954)CrossRefGoogle Scholar
  35. 35.
    Everett D.H.: A general approach to hysteresis. Part 4. An alternative formulation of the domain model. Trans. Faraday Soc. 51, 1551–1557 (1955)CrossRefGoogle Scholar
  36. 36.
    Everett D.H., Smith F.W.: A general approach to hysteresis. Part 2. Development of the domain theory. Trans. Faraday Soc. 50, 187–197 (1954)CrossRefGoogle Scholar
  37. 37.
    Everett D.H., Whitton W.I.: A general approach to hysteresis. Trans. Faraday Soc. 48, 749–752 (1952)CrossRefGoogle Scholar
  38. 38.
    Ewing J.A.: Experimental researches in magnetism. R. Soc. Lond. Philos. Trans. Ser. I 176, 523–640 (1885)CrossRefGoogle Scholar
  39. 39.
    Ewing, J.A.: Magnetic Induction in Iron and Other Metals. “The Electrician” Series. D. Van Nostrand Company, Princeton (1892)Google Scholar
  40. 40.
    Flynn, D.: Modelling the flow of water through multiphase porous media with the Preisach model. Ph.D. thesis, University College Cork (2008)Google Scholar
  41. 41.
    Flynn D., McNamara H., O’Kane J.P., Pokrovskii A.: Application of the Preisach model to soil-moisture hysteresis. In: Bertotti, M. (ed.) The Science of Hysteresis, vol. 3, pp. 689. Elsevier Science, Amsterdam (2005)Google Scholar
  42. 42.
    Flynn D., Rasskazov O.: On the integration of an ode involving the derivative of a Preisach nonlinearity. J. Phys. Conf. Ser. 22, 43 (2005)CrossRefGoogle Scholar
  43. 43.
    Fredlund D.G., Rahardjo H.: Soil Mechanics for Unsaturated Soils. Wiley, London (1993)CrossRefGoogle Scholar
  44. 44.
    Fredlund M.D., Wilson G.W., Fredlund D.G.: Use of the grain-size distribution for estimation of the soil-water characteristic curve. Can. Geotech. J. 39, 1103–1117 (2002)CrossRefGoogle Scholar
  45. 45.
    Geiger S.L., Durnford D.S.: Infiltration in homogeneous sands and a mechanistic model of unstable flow. Soil Sci. Soc. Am. J. 64, 460–469 (2000)CrossRefGoogle Scholar
  46. 46.
    Haines W.B.: Studies in the physical properties of soil: V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20, 97–116 (1930)CrossRefGoogle Scholar
  47. 47.
    Hassanizadeh S.M., Gray W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)CrossRefGoogle Scholar
  48. 48.
    Haverkamp, R., Reggiani, P., Ross, P.J., Parlange, J.-Y.: Soil water hysteresis prediction model based on theory and geometric scaling. In: Raats, P.A.C., Smiles, D., Warrick, A.W. (eds.) Environmental Mechanics, Water, Mass and Engergy Transfer in the Biosphere, pp. 213–246. American Geophysical Union, Washington (2002)Google Scholar
  49. 49.
    Helmig R.: Multiphase Flow and Transport Processes in the Subsurface. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  50. 50.
    Herminghaus S.: Dynamics of wet granular matter. Adv. Phys. 54, 221–261 (2005)CrossRefGoogle Scholar
  51. 51.
    Hilfer R.: Capillary pressure, hysteresis and residual saturation in porous media. Phys. A 359, 119–128 (2006)CrossRefGoogle Scholar
  52. 52.
    Hilfer R.: Macroscopic capillarity and hysteresis for flow in porous media. Phys. Rev. 73, 016307 (2006)Google Scholar
  53. 53.
    Hilfer R.: Macroscopic capillarity without a constitutive capillary pressure function. Phys. A 371, 209–225 (2006)CrossRefGoogle Scholar
  54. 54.
    Hilfer R., Doster F.: Percolation as a basic concept for macroscopic capillarity. Transp. Porous Media 82, 507–519 (2010)CrossRefMathSciNetGoogle Scholar
  55. 55.
    Hilfer, R., Doster, F., Zegeling, P.A.: Nonmonotone saturation profiles for hydrostatic equilibrium in homogeneous porous media. Vadose Zone Journal 11(3), vzj2012.0021 (2012). doi: 10.2136/vzj2012.0021
  56. 56.
    Hill, R. (ed.): The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1964)Google Scholar
  57. 57.
    Iverson R.M., LaHusen R.G.: Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246(4931), 796–799 (1989)CrossRefGoogle Scholar
  58. 58.
    Iveson S.M., Litster J.D., Hapgood K., Ennis B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117, 3–39 (2001)CrossRefGoogle Scholar
  59. 59.
    Jaynes D.B.: Comparison of soil-water hysteresis models. J. Hydrol. 75, 287–299 (1984)CrossRefGoogle Scholar
  60. 60.
    Kool J.B., Parker J.C.: Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23(1), 105–114 (1987)CrossRefGoogle Scholar
  61. 61.
    Krasnosel’skii M.A., Pokrovskii A.V.: Systems with Hysteresis. Springer, Berlin (1989)CrossRefMATHGoogle Scholar
  62. 62.
    Krejci, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakuto International Series in Mathematical Science and Applications, vol. 8. Gakkotosho, Tokyo (1996)Google Scholar
  63. 63.
    Kuczma, M.: Application of Variational Inequalities in the Mechanics of Plastic Flow and Martensitic Phase Transformations. Politechnika Poznanska, Poznan. Habilitation thesis (1999)Google Scholar
  64. 64.
    Lu N., Likos W.: Unsaturated Soil Mechanics. Wiley, Hoboken (2004)Google Scholar
  65. 65.
    Mayergoyz I.: Mathematical Models of Hysteresis. Springer, Berlin (1991)CrossRefMATHGoogle Scholar
  66. 66.
    Mitarai N., Nori F.: Wet granular materials. Adv. Phys. 55, 1–45 (2006)CrossRefGoogle Scholar
  67. 67.
    Müller I., Wilmanski K.: A model for phase transition in pseudoelastic bodies. Il Nuovo Cimento 57B(2), 283–318 (1980)CrossRefGoogle Scholar
  68. 68.
    Morel-Seytoux, H.J. (ed.): Unsaturated Flow in Hydrologic Modeling. Kluwer, Dordrecht (1989)Google Scholar
  69. 69.
    Mualem Y.: Modified approach to capillary hysteresis based on a similarity hypothesis. Water Resour. Res. 9(5), 1324–1331 (1973)CrossRefGoogle Scholar
  70. 70.
    Mualem Y.: A conceptual model of hysteresis. Water Resour. Res. 10, 514–520 (1974)CrossRefGoogle Scholar
  71. 71.
    Mualem Y.: A modified dependent-domain theory of hysteresis. Soil Sci. 137(5), 283–291 (1984)CrossRefGoogle Scholar
  72. 72.
    Mualem Y., Beriozkin A.: Application of the “proportionate partitioning” method suggested by Poulovassilis and Kargas (2000) for determination of the domain distribution function. Transp. Porous Media 71, 253–264 (2008)CrossRefGoogle Scholar
  73. 73.
    Mualem Y., Beriozkin A.: General scaling rules of the hysteretic water retention function based on mualem’s domain theory. Eur. J. Soil Sci. 60(4), 652–661 (2009)CrossRefGoogle Scholar
  74. 74.
    Mualem Y., Beriozkin A.: Response to Parlange et al. by Y. Mualem & A. Beriozkin. Eur. J. Soil Sci. 61(6), 1114–1117 (2010)CrossRefGoogle Scholar
  75. 75.
    Mualem Y., Dagan G.: A dependent domain model of capillary hysteresis. Water Resour. Res. 11(3), 452–460 (1975)CrossRefGoogle Scholar
  76. 76.
    Néel L.: Théories des lois d’aimanation de Lord Rayleigh, I: Les deplacements d’une paroi isolee. Cahiers de Physique 12(1), 1–20 (1942)Google Scholar
  77. 77.
    Néel L.: Théories des lois d’aimanation de Lord Rayleigh, II: Multiples domaines et champ coercitif. Cahiers de Physique 13(18), 19–30 (1943)Google Scholar
  78. 78.
    Nieber J.L., Dautov R.Z., Egorov A.G., Sheshukov A.Y.: Dynamic capillary pressure mechanism for instability in gravity-driven flows; review and extension to very dry conditions. In: Das, D., Hassanizadeh , S. (eds.) Upscaling Multiphase Flow in Porous Media, pp. 147–172. Springer, Amsterdam (2005)CrossRefGoogle Scholar
  79. 79.
    Parker J.C., Lenhard R.J.: A model for hysteretic constitutive relations governing multiphase flow, 1. Saturation–pressure relations. Water Resour. Res. 23(12), 2187–2196 (1987)CrossRefGoogle Scholar
  80. 80.
    Parlange J.-Y.: Capillary hysteresis and the relationship between drying and wetting curves. Water Resour. Res. 12(2), 224–228 (1976)CrossRefGoogle Scholar
  81. 81.
    Parlange J.-Y., Haverkamp R., Sander G., Hogarth W., Braddock R.: Comments on ‘general scaling rules of the hysteretic water retention function based on mualem’s domain theory’ by Y. Mualem & A. Beriozkin. Eur. J. Soil Sci. 61(6), 1113–1114 (2010)CrossRefGoogle Scholar
  82. 82.
    Philip J.R.: Similarity hypothesis for capillary hysteresis in porous materials. J. Geophys. Res. 69(8), 1553–1562 (1964)CrossRefGoogle Scholar
  83. 83.
    Philip J.R.: Horizontal redistribution with capillary hysteresis. Water Resour. Res. 27(7), 1459–1469 (1991)CrossRefMathSciNetGoogle Scholar
  84. 84.
    Pietruszczak, S., Pande, G.N.: On the mechanical response of partially saturated soils at low and high degrees of saturation. In: Pande, G.N., Pietruszczak, S. (eds.) Numerical Models in Geomechanics, vol. 5. Balkema, Rotterdam (1995)Google Scholar
  85. 85.
    Poulovassilis, A., Kargas, G., Kerkides, P.: Comments on the paper ‘Application of the “Proportionate Partitioning” method suggested by Poulovassilis and Kargas (2000) for determination of the domain distribution function’ by Mualem and Beriozkin (2008). Transp. Porous Media 75, 223–226 (2008)Google Scholar
  86. 86.
    Poulovassillis A.: Hysteresis of pore water, an application of the concept of independent domains. Soil Sci. 93, 405–412 (1962)CrossRefGoogle Scholar
  87. 87.
    Poulovassillis A.: Hysteresis of pore water in granular porous bodies. Soil Sci. 109(1), 5–12 (1970)CrossRefGoogle Scholar
  88. 88.
    Poulovassillis A., Child E.C.: The hysteresis of pore water: the non-independence of domains. Soil Sci. 112, 301–312 (1971)CrossRefGoogle Scholar
  89. 89.
    Poulovassillis A., Kargas G.: A note on calculating hysteretic behavior. Soil Sci. Soc. Am. J. 64, 1947–1950 (2000)CrossRefGoogle Scholar
  90. 90.
    Preisach F.: Über die magnetische Nachwirkung. Zeitschrift für Physik 94, 277–302 (1935)CrossRefGoogle Scholar
  91. 91.
    Prunty L., Casey F.X.M.: Soil water retention curve description using a flexible smooth function. Vadose Zone J. 1(1), 179–185 (2002)CrossRefGoogle Scholar
  92. 92.
    Restagno F., Bocquet L., Crassous J., Charlaix E.: Slow kinetics of capillary condensation in confined geometry: experiment and theory. Colloids Surf. A Physicochem. Eng. Asp. 206, 69–77 (2002)CrossRefGoogle Scholar
  93. 93.
    Richefeu V., Youssoufi M.S.E., Radjai F.: Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304 (2006)CrossRefGoogle Scholar
  94. 94.
    Roubiček, T.: Models of microstructure evolution in shape memory alloys. In: Castañeda, P., Telega, J., Gambin, B. (eds.) Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials, vol. 170 of NATO Science Series II: Mathematics, Physics and Chemistry. Springer, Amsterdam, pp. 269–304 (2005)Google Scholar
  95. 95.
    Sahimi, M.: Flow and Transport in Porous Media and Fractured Rock, from Classical Methods to Modern Approaches, 2nd edn. WILEY-VCH Verlag, Weinheim (2011)Google Scholar
  96. 96.
    Schiffer P.: Granular physics: a bridge to sandpile stability. Nat. Phys. 1, 21–22 (2005)CrossRefGoogle Scholar
  97. 97.
    Scott, P.S., Farquhar, G.J., Kouwen, N.: Hysteretic effects on net infiltration. In: Advances in infiltration, pp. 163–171 (1983)Google Scholar
  98. 98.
    Sheta, H.: Simulation von Mehrphasenvorgängen in porösen Medien unter Einbeziehung von Hysterese-Effekten. Ph.D. thesis, Universität Stuttgart (in German) (1999)Google Scholar
  99. 99.
    Stewart K.H.: Ferromagnetic Domains. Cambridge Monographs on Physics. Cambridge University Press, (1954)Google Scholar
  100. 100.
    Topp G.C.: Soil water hysteresis in silt loam and clay loam soils. Water Resour. Res. 7(4), 914–920 (1971)CrossRefGoogle Scholar
  101. 101.
    Topp G.C., Miller E.E.: Hysteretic moisture characteristics and hydraulic conductivities for glass-beads media. Soil Sci. Soc. Am. Proc. 30, 156–162 (1966)CrossRefGoogle Scholar
  102. 102.
    van Genuchten M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  103. 103.
    Vereecken H., Maes J., Feyen J., Darius P.: Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci. 148(6), 389–403 (1989)CrossRefGoogle Scholar
  104. 104.
    Visintin A.: Differential Models of Hysteresis. Springer, New York (1994)CrossRefMATHGoogle Scholar
  105. 105.
    Vogel T., Gerke H.H., Zhang R., Van Genuchten M.T.: Modeling flow and transport in a two-dimensional dual- permeability system with spatially variable hydraulic properties. J. Hydrol. 238, 78–89 (2000)CrossRefGoogle Scholar
  106. 106.
    Wheeler S.J.: A conceptual model for soils containing large gas bubbles. Géotechnique 38, 389–397 (1988)CrossRefGoogle Scholar
  107. 107.
    Wilmanski K.: Propagation of the interface in the stress-induced austenite–martensite transformation. Ingenieur-Archiv 53, 291–301 (1983)CrossRefMATHGoogle Scholar
  108. 108.
    Wilmanski, K.: On pattern formation in stress-induced martensitic transformation. In: Muschik, G.M.W. (ed.) Nonlinear Thermodynamical Processes in Continua, TUB-Dokumentationen, Heft 61, Berlin, pp. 88–105 (1992))Google Scholar
  109. 109.
    Wilmanski, K.: Note on the Model of Pseudoelastic Hysteresis. Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, pp. 207–221 (1993)Google Scholar
  110. 110.
    Wilmanski K.: Symmetric model of stress–strain hysteresis loops in shape memory alloys. Int. J. Eng. Sci. 31(8), 1121–1138 (1993)CrossRefMATHGoogle Scholar
  111. 111.
    Wilmanski K.: A thermodynamic model of compressible porous materials with the balance equation of porosity. Transp. Porous Media 32, 21–47 (1998)CrossRefGoogle Scholar
  112. 112.
    Wilmanski K.: On a homogeneous adsorption in porous materials. ZAMM 81, 119–124 (2001)CrossRefMATHMathSciNetGoogle Scholar
  113. 113.
    Wood, D.M.: The behaviour of partly saturated soils: a review. Cambridge University Report, Engineering Department (1979)Google Scholar
  114. 114.
    Wösten J.H.M., Pachepsky Y.A., Rawls W.J.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristic. J. Hydrol. 251, 123–150 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Institute for Geotechnical Engineering and Soil Mechanics, Technical University of BerlinBerlinGermany

Personalised recommendations