Skip to main content
Log in

Frame dependence of stationary heat transfer in an inert mixture of ideal gases

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is devoted to the study of a stationary heat transfer problem in an inert binary mixture of ideal gases. The mixture is enclosed between two coaxial cylinders, kept at two different constant temperatures and at rest in a non-inertial frame. In particular, the frame is assumed to rotate with a constant angular velocity around the cylinder axes. The phenomenon is described by the linearized equations of extended thermodynamics with 13 moments. Integration of the field equations requires the assignment of non-controllable boundary values, which are determined through a fluctuation principle. It turns out that the temperature field presents boundary layers. Moreover, in agreement with the predictions of the kinetic theory, the tangential components of the heat and of the diffusion fluxes cannot vanish. We also show that the mixture and its constituents cannot be at rest in the rotating frame. An analysis is proposed concerning the combined effects of thermo-diffusion and rotation in the separation of mixture components. A comparison between classical and extended thermodynamics predictions is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chapman S., Cowling T.G.: The Mathematical Theory of Non-Uniform Gases. 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  2. Enskog D.: Über eine Verallgemeinerung der zweiten Maxwellschen Theorie der Gase. Physik. Zs. Leipzig 12, 56–60 (1911)

    MATH  Google Scholar 

  3. Enskog D.: Bemerkungen zu einer Fundamentalgleichung in der kinetischen Gastheorie. Physik. Zs. Leipzig 12, 533–539 (1911)

    MATH  Google Scholar 

  4. Chapman S.: On the kinetic theory of gas, Part II: a composite monoatomic gas: diffusion, viscosity and thermal conduction. Philos. Trans. R. Soc. Lond. A 217, 115–197 (1918)

    Article  MATH  Google Scholar 

  5. Chapman S., Dootson F.W.: A note on thermal diffusion. Philos. Mag. 33, 248–256 (1917)

    Article  Google Scholar 

  6. Lindemann F.A., Aston F.W.: The possibility of separating isotopes. Philos. Mag. 37, 523 (1919)

    Article  Google Scholar 

  7. Beams J.W., Haynes F.B.: The separation of isotopes by centrifuging. Phys. Rev. 50, 491–492 (1936)

    Article  Google Scholar 

  8. Beams J.W., Skarstrom C.: Concentration of isotopes by evaporative centrifuge method. Phys. Rev. 56, 266–272 (1939)

    Article  Google Scholar 

  9. Cohen K.: The Theory of Isotope Separation as Applied to the Large-Scale Production of U235. McGraw-Hill, New York (1951)

    Google Scholar 

  10. Brouwers J.J.H.: On compressible flow in a rotating cylinder. J. Eng. Math. 12(3), 265–285 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wood H.G., Morton J.B.: Onsager’s pancake approximation for the fluid dynamics of a gas centrifuge. J. Fluid Mech. 101(1), 1–31 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Williams L.O.: Application of centrifugal separation to the production of hydrogen from coal. Appl. Energy 6, 63–70 (1980)

    Article  Google Scholar 

  13. Olander D.R.: The theory of uranium enrichment by the gas centrifuge. Prog. Nucl. Energy 8(1), 1–33 (1981)

    Article  Google Scholar 

  14. Bird G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University press, Oxford (1994)

    Google Scholar 

  15. Roblin, P., Doneddu, F.: Direct Monte Carlo simulations in a gas centrifuge, In: Rarefied gas dynamics: 22nd International Symposium, Americal Institute of Physics, Conference proceedings, vol. 585(1), pp. 169–173 (2001)

  16. Pereira L.M., Pérez Guerrero J.S., Brazão N., Cotta R.M.: Compressible flow and heat transfer in ultracentrifuges: hybrid analysis via integral transforms. Int. J. Heat Mass Transf. 45(1), 99–112 (2002)

    Article  MATH  Google Scholar 

  17. Van Wissen R., Golombok M., Brouwers J.J.H.: Separation of carbon dioxide and methane in continuous countercurrent gas centrifuges. Chem. Eng. Sci. 60(16), 4397–4407 (2005)

    Article  Google Scholar 

  18. Ganjaei A.A., Nourazar S.S.: Numerical simulation of a binary gas flow inside a rotating cylinder. J. Mech. Sci. Technol. 23, 2848–2860 (2009)

    Article  Google Scholar 

  19. Whitley S.: Review of the gas centrifuge until 1962. Part I: principles of separation physics. Rev. Mod. Phys. 56, 41–66 (1984)

    Article  Google Scholar 

  20. Whitley S.: Review of the gas centrifuge until 1962. Part II: principles of high-speed rotation. Rev. Mod. Phys. 56, 67–97 (1984)

    Article  Google Scholar 

  21. Kemp R.S.: Gas centrifuge theory and development: a review of U.S. programs. Sci. Glob. Secur. 17, 1–19 (2009)

    Article  MathSciNet  Google Scholar 

  22. Müller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  23. Müller I.: On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 45, 241–250 (1972)

    Article  MATH  Google Scholar 

  24. Heckl M., Müller I.: Frame dependence, entropy, entropy flux, and wave speed in mixtures of gases. Acta Mech. 50, 71–95 (1983)

    Article  MATH  Google Scholar 

  25. Barbera E., Müller I.: Heat conduction in a non-inertial frame. In: Podio-Guidugli, B. (ed.) Rational Continua, Classical and New, pp. 1–10. Springer, Milan (2002)

    Google Scholar 

  26. Barbera E., Müller I.: Inherent frame dependence of thermodynamic fields in a gas. Acta Mech. 184, 205–216 (2006)

    Article  MATH  Google Scholar 

  27. Barbera E., Brini F.: Heat transfer in gas mixtures: advantages of an extended thermodynamics approach. Phys. Lett. A 375(4), 827–831 (2011)

    Article  Google Scholar 

  28. Barbera E., Brini F.: Heat transfer in a binary gas mixture between two parallel plates: an application of linear extended thermodynamics. Acta Mech. 220, 87–105 (2011)

    Article  MATH  Google Scholar 

  29. Barbera E., Brini F.: An extended thermodynamics description of stationary heat transfer in binary gas mixtures confined in radial symmetric bounded domains. Cont. Mech. Thermodyn. 24, 313–331 (2012)

    Article  MathSciNet  Google Scholar 

  30. Barbera E., Brini F.: Heat transfer in multi-component gas mixtures described by extended thermodynamics. Meccanica 47(3), 655–666 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bhatnagar P.L., Gross E.P., Krook M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  32. Barbera E., Müller I., Reitebuch D., Zhao N.: Determination of the boundary conditions in extended thermodynamics via fluctuation theory. Cont. Mech. Thermodyn. 16(5), 411–425 (2004)

    Article  MATH  Google Scholar 

  33. Müller I., Ruggeri T.: Stationary heat conduction in radially symmetric situations—an application of extended thermodynamics. J. Non-Newtonian Fluid Mech. 119, 139–143 (2004)

    Article  MATH  Google Scholar 

  34. Barbera E., Müller I.: Secondary heat flow between confocal ellipses—an application of extended thermodynamics. J. Non-Newtonian Fluid Mech. 153, 149–156 (2008)

    Article  MATH  Google Scholar 

  35. Barbera E., Brini F.: On stationary heat conduction in 3D symmetric domains: an application of extended thermodynamics. Acta Mech. 215, 241–260 (2010)

    Article  MATH  Google Scholar 

  36. Barbera, E., Brini, F., Valenti, G.: Some non-linear effects of stationary heat conduction in 3D domains through extended thermodynamics, EPL 98, article n.54004, 1–6, doi:10.1209/0295-5075/98/54004 (2012)

  37. Fick A.: Über Diffusion. Poggendorf’s Annalen Phys. Chem. 94, 59–86 (1855)

    Article  Google Scholar 

  38. Müller I.: A thermodynamic theory of mixture of fluids. Arch. Rat. Mech. Anal. 28, 1–39 (1968)

    Article  MATH  Google Scholar 

  39. Truesdell C.: Sulle basi della termodinamica I. Atti Accad. Naz. Lincei: Rend. Sc. fis. mat. nat. 22, 33–38 (1957)

    MATH  MathSciNet  Google Scholar 

  40. Truesdell C.: Sulle basi della termodinamica II. Atti Accad. Naz. Lincei: Rend. Sc. fis. mat. nat. 22, 158–166 (1957)

    MathSciNet  Google Scholar 

  41. Truesdell C., Toupin R.A.: The classical Field theories. In: Flügge, S.: Handbuch der Physik- Prinzipen der klassischen Mechanik und Feldtheorie III/1, Springer, Berlin (1960)

    Google Scholar 

  42. Truesdell C.: Mechanical Basis of Diffusion. J. Chem. Phys. 37, 2336–2344 (1962)

    Article  Google Scholar 

  43. Truesdell C.: Sulle basi della Termodinamica delle Miscele. Atti Accad. Naz. Lincei: Rend. Sc. fis. mat. nat. 44, 381–383 (1968)

    Google Scholar 

  44. Müller I.: A new approach to thermodynamics of simple mixtures. Zeit. Naturforschung 28a, 1801–1813 (1973)

    Google Scholar 

  45. Müller I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  46. Kosuge S., Aoki K., Takata S.: Heat transfer in a gas mixture between two parallel plates: finite-difference analysis of the Boltzmann equation. In: Bartel, T.J., Gallis, M.A. (eds.) Rarefied Gas Dynamics, pp. 289–296. AIP, Melville (2001)

    Google Scholar 

  47. Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  48. Grad H.: Principles of the kinetic theory of gases. In: Handbuch der Physik XII, pp. 205–294. Springer, Heidelberg (1958)

  49. Truesdell C.: The physical components of vector and tensors. ZAMM 33, 345–356 (1953)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Barbera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbera, E., Brini, F. Frame dependence of stationary heat transfer in an inert mixture of ideal gases. Acta Mech 225, 3285–3307 (2014). https://doi.org/10.1007/s00707-014-1118-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1118-0

Keywords

Navigation