Skip to main content
Log in

Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The effects of dynamic subgrid-scale (SGS) modeling are investigated in variational multiscale (VMS) large-eddy simulation (LES) simulations of bluff-body flows. The spatial discretization is based on a mixed finite-element/finite-volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite-volume cell agglomeration. The dynamic and non-dynamic versions of Smagorinsky and wall-adapted local eddy-viscosity SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The VMS-LES and classical LES approaches, combined with the considered dynamic and non-dynamic SGS models, are applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3,900 and 20,000 and to the flow around a square cylinder at Reynolds numbers 22,000 and 175,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sagaut P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Camarri S., Salvetti M.V., Koobus B., Dervieux A.: A low diffusion MUSCL scheme for LES on unstructured grids. Comput. Fluids 33, 1101–1129 (2004)

    Article  MATH  Google Scholar 

  3. Ouvrard H., Koobus B., Dervieux A., Salvetti M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 39(7), 1083–1094 (2010)

    Article  MATH  Google Scholar 

  4. Wornom S., Ouvrard H., Salvetti M.-V., Koobus B., Dervieux A.: Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput. Fluids 47(1), 44–50 (2011)

    Article  MATH  Google Scholar 

  5. Hughes T.J.R., Mazzei L., Jansen K.E.: Large-eddy simulation and the variational multiscale method. Comput. Vis. Sci. 3, 47–59 (2000)

    Article  MATH  Google Scholar 

  6. Smagorinsky J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  7. Nicoud F., Ducros F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

  8. Koobus B., Farhat C.: A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes-application to vortex shedding. Comput. Methods Appl. Mech. Eng. 193, 1367–1383 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Germano M., Piomelli U., Moin P., Cabot W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  10. Farhat C., Rajasekharan A., Koobus B.: A dynamic variational multiscale method for large eddy simulations on unstructured meshes. Comput. Methods Appl. Mech. Eng. 195, 1667–1691 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holmen J., Hughes T.J.R., Oberai A.A., Wells G.N.: Sensitivity of the scale partition for variational multiscale LES of channel flow. Phys. Fluids 16(3), 824–827 (2004)

    Article  Google Scholar 

  12. Gravemeier V.: Variational multiscale large eddy simulation of turbulent flow in a diffuser. Comput. Mech. 39(4), 477–495 (2012)

    Article  Google Scholar 

  13. Lallemand M.H., Steve H., Dervieux A.: Unstructured multigridding by volume agglomeration: current status. Comput. Fluids 21, 397–433 (1992)

    Article  MATH  Google Scholar 

  14. Lilly D.K.: A proposed modification of the Germano subgrid scale closure model. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  15. Baya Toda, H., Truffin, K., Nicoud, F.: Is the dynamic procedure appropriate for all SGS model. In: Pereira, J.C.F., Sequeira, A. (eds) V European Conference on Computational Fluid Dynamics, ECCOMAS CFD. Lisbon, Portugal, 14–17 June (2010)

  16. Farhat, C., Koobus, B., Tran, H.: Simulation of vortex shedding dominated flows past rigid and flexible structures. In: Kvamsdal, T., Enevoldsen, I., Herfjord, K., Jenssen, C.B., Mehr, K., Norsett, S. (eds.) Computational Methods for Fluid- Structure Interaction, pp. 1–30. Tapir (1999)

  17. Roe P.L.: Approximate Riemann solvers, parameters, vectors and difference schemes. J. Comput. Phys. 43, 357–371 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Van Leer B.: Towards the ultimate conservative scheme. IV: a new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)

    Article  MATH  Google Scholar 

  19. Martin R., Guillard H.: A second-order defect correction scheme for unsteady problems. Comput. Fluids 25(1), 9–27 (1996)

    Article  MATH  Google Scholar 

  20. Steger J.L., Warming R.F.: Flux vector splitting for the inviscid gas dynamic equations with applications to the finite difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Salvatici E., Salvetti M.V.: Large-eddy simulations of the flow around a circular cylinder: effects of grid resolution and subgrid scale modeling. Wind Struct. 6(6), 419–436 (2003)

    Article  Google Scholar 

  22. Aradag S.: Unsteady turbulent vortex structure downstream of a three dimensional cylinder. J. Therm. Sci. Technol. 29(1), 91–98 (2009)

    Google Scholar 

  23. Lim H., Lee S.: Flow control of circular cylinders with longitudinal grooved surfaces. AIAA J. 40(10), 2027–2035 (2002)

    Article  Google Scholar 

  24. Anderson J.D.: Fundamentals of Aerodynamics, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  25. Norberg C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 57–96 (2003)

    Article  Google Scholar 

  26. Norberg, C.: Pressure distribution around a circular cylinder in corss-flow. In: Hourigan, K., Leweke, T., Thompson, M.C., Williamson, C.H.K. (eds) Proceedings of the Symposium on bluff body wakes and vortex-induce vibrations (BBVIV3). Port Arthur, Quuensland Australia (2002)

  27. Ong L., Wallace J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20, 441–453 (1996)

    Article  Google Scholar 

  28. Kravchenko A.G., Moin P.: Numerical studies of flow over a circular cylinder at Re = 3900. Phys. Fluids 12(2), 403–417 (1999)

    Article  MathSciNet  Google Scholar 

  29. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20, 085101-1–085101-14 (2008)

  30. Rodi W., Ferziger J.H., Breuer M., Pourqui M.: Status of large eddy simulation: results of a workshop. J. Fluids Eng. Trans. ASME 119, 248–262 (1997)

    Article  Google Scholar 

  31. Verstappen R.W.C.P., Veldman A.E.P.: Direct numerical simulation of turbulence at lower costs. J. Eng. Math. 32, 143–159 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Verstappen, R.: Regularizing Turbulent Flow (2010). http://www.prace-ri.eu/IMG/pdf/16-verstappen

  33. Lyn D.A., Rodi W.: The flapping shear layer formed by flow separation from the forward corner of a square cylinder. J. Fluid Mech. 261, 316–353 (1994)

    Google Scholar 

  34. Lyn D.A., Einav S., Rodi W., Park J-H.: A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285–319 (1995)

    Article  Google Scholar 

  35. Luo S.C., Yazdani MdG., Chew Y.T., Lee T.S.: Effects of incidence and afterbody shape on flow past bluff cylinders. J. Ind. Aerodyn. 53, 375–399 (1994)

    Article  Google Scholar 

  36. Lee B.E.: The effect of turbulence on the surface pressure field of a square prism. J. Fluid Mech. 69, 263–282 (1975)

    Article  Google Scholar 

  37. Vickery B.J.: Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream. Fluid Mech. 25, 481–494 (1966)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Moussaed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussaed, C., Wornom, S., Salvetti, MV. et al. Impact of dynamic subgrid-scale modeling in variational multiscale large-eddy simulation of bluff-body flows. Acta Mech 225, 3309–3323 (2014). https://doi.org/10.1007/s00707-014-1112-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1112-6

Keywords

Navigation