Skip to main content
Log in

Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Several novel models, based on the nonlocal stress theory, on the lateral buckling of two- and three-dimensional (2D and 3D) ensembles of vertically aligned single-walled carbon nanotubes (SWCNTs) are developed. The existing van der Waals forces between the constitutive atoms of the neighboring SWCNTs are modeled by an elastic layer, and each individual SWCNT is modeled using the nonlocal Rayleigh beam theory. The governing equations for lateral buckling of both 2D and 3D SWCNTs ensembles due to axial compressive loads are derived. These are called discrete models since the lateral deformations of each SWCNT only express in terms of the longitudinal coordinate of the SWCNT. It will be revealed that the lateral deformation of SWCNTs can be also stated in terms of two and three coordinates for 2D and 3D ensembles of SWCNTs, respectively. The resulting models are called continuous models. Based on both discrete and continuous models, the critical axial buckling loads for both 2D and 3D ensembles of SWCNTs for a special case, when the outer SWCNTs are prohibited from any lateral movement, are obtained. A reasonably good agreement between the results of the discrete model and those of the continuous model is reported. Subsequently, the roles of small-scale parameter, intertube distance, and number of SWCNTs on the critical buckling loads are examined. The obtained results and the proposed models in the present work would be very helpful in design and fabrication of 2D and 3D groups of vertically aligned SWCNTs, particularly those whose main duties are to transfer securely the applied axial forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  Google Scholar 

  2. Saito R., Dresselhaus G., Dresselhaus M.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  3. Thostenson E.T., Ren Z., Chou T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  4. Coleman J.N., Khan U., Blau W.J., Gunko Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  5. Ru C.Q.: Axially compressed buckling of a double-walled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 49, 1265–1279 (2001)

    Article  MATH  Google Scholar 

  6. He X.Q., Kitipornchai S., Liew K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    Article  MATH  Google Scholar 

  7. Xiaohu Y., Qiang H.: Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field. Compos. Sci. Technol. 67, 125–134 (2007)

    Article  Google Scholar 

  8. Yao X., Han Q.: The thermal effect on axially compressed buckling of a double-walled carbon nanotube. Euro. J. Mech. A/Solids 26, 298–312 (2007)

    Article  MATH  Google Scholar 

  9. Yao X., Han Q., Xin H.: Bending buckling behaviors of single- and multi-walled carbon nanotubes. Comput. Mater. Sci. 43, 579–590 (2008)

    Article  Google Scholar 

  10. Adali S.: Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory. Phys. Lett. A 372, 5701–5705 (2008)

    Article  MATH  Google Scholar 

  11. Lee H.L., Chang W.J.: A closed-form solution for critical buckling temperature of a single-walled carbon nanotube. Phys. E 41, 1492–1494 (2009)

    Article  Google Scholar 

  12. Yan Y., Wang W.Q., Zhang L.X.: Nonlocal effect on axially compressed buckling of triple-walled carbon nanotubes under temperature field. Appl. Math. Model. 34, 3422–3429 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chan Y., Thamwattana N., Hill J.M.: Axial buckling of multi-walled carbon nanotubes and nanopeapods. Euro. J. Mech. A/Solids 30, 794–806 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pradhan S.C., Reddy G.K.: Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Comput. Mater. Sci. 50, 1052–1056 (2011)

    Article  Google Scholar 

  15. Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MATH  MathSciNet  Google Scholar 

  16. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  18. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  19. Wang Q., Varadan V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Article  Google Scholar 

  20. Hu Y.G., Liew K.M., Wang Q.: Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes. J. Appl. Phys. 106, 044301 (2009)

    Article  Google Scholar 

  21. Kiani K.: A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 52, 1343–1356 (2010)

    Article  MathSciNet  Google Scholar 

  22. Kiani K.: Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories. Int. J. Mech. Sci. 68, 16–34 (2013)

    Article  Google Scholar 

  23. Kiani, K.: Longitudinal, transverse, and torsional vibrations and stabilities of axially moving single-walled carbon nanotubes. Curr. Appl. Phys. 13, 1651–1660 (2013)

  24. Kiani K., Mehri B.: Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J. Sound Vib. 329, 2241–2264 (2010)

    Article  Google Scholar 

  25. Kiani K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations. Acta Mech. 216, 165–195 (2011)

    Article  MATH  Google Scholar 

  26. Kiani K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part II: parametric study. Acta Mech. 216, 197–206 (2011)

    Article  MATH  Google Scholar 

  27. Kiani K.: Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys. E 42, 2391–2401 (2010)

    Article  Google Scholar 

  28. Wang L., Ni Q., Li M.: Buckling instability of double-wall carbon nanotubes conveying fluid. Comput. Mater. Sci. 44, 821–825 (2008)

    Article  Google Scholar 

  29. Yan Y., Wang W.Q., Zhang L.X.: Dynamical behaviors of fluid-conveyed multi-walled carbon nanotubes. Appl. Math. Model. 33, 1430–1440 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rasekh M., Khadem S.E.: Nonlinear vibration and stability analysis of axially loaded embedded carbon nanotubes conveying fluid. J. Phys. D Appl. Phys. 42, 135112 (2009)

    Article  Google Scholar 

  31. Kiani K.: Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluidsflow using nonlocal Rayleigh beam model. Appl. Math. Model. 37, 1836–1850 (2013)

    Article  MathSciNet  Google Scholar 

  32. Chowdhury R., Adhikari S., Mitchell J.: Vibrating carbon nanotube based bio-sensors. Phys. E 42, 104–109 (2009)

    Article  Google Scholar 

  33. Georgantzinos S.K., Anifantis N.K.: Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Phys. E 42, 1795–1801 (2010)

    Article  Google Scholar 

  34. Arash B., Wang Q., Varadan V.J.: Carbon nanotube-based sensors for detection of gas atoms. ASME J. Nanotechnol. Eng. Med. 2, 021010 (2011)

    Article  Google Scholar 

  35. Kiani K., Ghaffari H., Mehri B.: Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr. Appl. Phys. 13, 107120 (2013)

    Google Scholar 

  36. Wang H., Dong K., Men F., Yan Y.J., Wang X.: Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl. Math. Model. 34, 878–889 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang X., Shen J.X., Liu Y., Shen G.G., Lu G.: Rigorous van der Waals effect on vibration characteristics of multi-walled carbon nanotubes under a transverse magnetic field. Appl. Math. Model. 36, 648–656 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kiani K.: Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Phys. E 45, 86–96 (2012)

    Article  Google Scholar 

  39. Arash B., Wang Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Article  Google Scholar 

  40. Duan W.H., Wang C.M., Zhang Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Article  Google Scholar 

  41. Sundararaghavan V., Waas A.: Non-local continuum modeling of carbon nanotubes: physical interpretation of non-local kernels using atomistic simulations. J. Mech. Phys. Solids 59, 1191–1203 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lennard-Jones J.E.: The determination of molecular fields: from the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. Ser. A 106, 441–462 (1924)

    Article  Google Scholar 

  43. Girifalco L.A., Lad R.A.: Energy of cohesion, compressibility and the potential energy function of graphite system. J. Chem. Phys. 25, 693–697 (1956)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, K. Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models. Acta Mech 225, 3569–3589 (2014). https://doi.org/10.1007/s00707-014-1107-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1107-3

Keywords

Navigation