Skip to main content
Log in

Exact reconstruction of multiple concentrated damages on beams

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, an exact procedure for the reconstruction of multiple concentrated damages on a straight beam is proposed. The concentrated damages are modelled as Dirac’s delta distributions capturing the effect of concentrated stiffness reduction. The presented procedure requires the knowledge of vibration mode shape displacements together with the relevant natural frequency, for the reconstruction of each damage position and intensity. The exact solution of the inverse problem at hand has been pursued by exploiting the analytical structure of the explicit closed form expressions provided for the vibration mode shapes of beams in the presence of an arbitrary number of cracks. The proposed procedure is first presented under the hypothesis that the displacements of a vibration mode shape are known at the cracked cross-sections. In this case, explicit closed form expressions of the crack severities are formulated. A further simple reconstruction approach allows the evaluation of the exact positions and intensity of the concentrated damages, if displacements of two vibration mode shapes are known at a single cross-section between two consecutive cracks. The proposed reconstruction procedure is applied for the identification of multiple cracks on a free–free beam where measurements have been simulated by means of a finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.D., Cawley P., Pye C.J., Stone B.J.: A vibration technique for non-destructively assessing the integrity of structures. J. Mech. Eng. Sci. 20, 93–100 (1978)

    Article  Google Scholar 

  2. Gudmundson P.: Eigenfrequency changes of structures due to cracks, notches and other geometrical changes. J. Mech. Phys. Solids 30(5), 339–353 (1982)

    Article  MathSciNet  Google Scholar 

  3. Rizos P.F., Aspragathos N., Dimarogonas A.D.: Identification of crack location and magnitude in a cantilever beam from the vibration modes. J. Sound Vib. 138(3), 381–388 (1990)

    Article  Google Scholar 

  4. Hearn G., Testa R.B.: Modal analysis for damage detection in structures. J. Struct. Eng. 117(10), 3042–3063 (1991)

    Article  Google Scholar 

  5. Liang R.Y., Hu J., Choy F.: Theoretical study of crack-induced eigenfrequency changes on beam structures. J. Eng. Mech. (ASCE) 118, 384–396 (1992)

    Article  Google Scholar 

  6. Morassi A.: Crack-induced changes in eigenparameters of beam structures. J. Eng. Mech. (ASCE) 119, 1798–1803 (1993)

    Article  Google Scholar 

  7. Narkis Y.: Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172, 549–558 (1994)

    Article  MATH  Google Scholar 

  8. Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W. : Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review, Research report LA-13070-MS, ESA-EA, Los Alamos National Laboratory, Los Alamos, New Mexico (1996)

  9. Capecchi D., Vestroni F.: Monitoring of structural systems by using frequency data. Earthq. Eng. Struct. Dyn. 28, 447–461 (1999)

    Article  Google Scholar 

  10. Chaudhari T.D., Maiti S.K.: A study of vibration of geometrically segmented beams with and without crack. Int. J. Solids Struct. 37, 761–779 (2000)

    Article  MATH  Google Scholar 

  11. Maeck J., Abdel Wahab M., Peeters B., Roeck G., Visscher J., Wilde W.P., Ndambi J.M., Vantomme J.: Damage identification in reinforced concrete structures by dynamic stiffness determination. Eng. Struct. 22, 1339–1349 (2000)

    Article  Google Scholar 

  12. Vestroni F., Capecchi D.: Damage detection in beam structures based on frequency measurements. J. Eng. Mech. (ASCE) 126(7), 761–768 (2000)

    Article  Google Scholar 

  13. Morassi A.: Identification of a crack in a rod based on changes in a pair of natural frequencies. J. Sound Vib. 242, 577–596 (2001)

    Article  Google Scholar 

  14. Pai P.F., Young L.G.: Damage detection of beams using operational deflection shapes. Int. J. Solids Struct. 38, 3161–3192 (2001)

    Article  MATH  Google Scholar 

  15. Lele S.P., Maiti S.K.: Modelling of transverse vibration of short beams for crack detection and measurement of crack extension. J. Sound Vib. 257, 559–583 (2002)

    Article  Google Scholar 

  16. Maeck J., De Roeck G.: Damage assessment using vibration analysis on the Z24-bridge. Mech. Syst. Signal Process. 17(1), 133–142 (2003)

    Article  Google Scholar 

  17. Dilena M., Morassi A.: The use of antiresonances for crack detection in beams. J. Sound Vib. 276(1-2), 195–214 (2004)

    Article  Google Scholar 

  18. Gladwell G.M.L.: Inverse Problems in Vibration, 2nd edn. Kluwer, Dordrecht (2004)

    Google Scholar 

  19. Viola E., Federici L., Nobile L.: Detection of crack location using cracked beam element method for structural analysis. Theor. Appl. Fract. Mech. 36, 23–35 (2001)

    Article  Google Scholar 

  20. Caddemi S., Morassi A.: Crack detection in elastic beams by static measurements. Int. J. Solids Struct. 44(16), 5301–5315 (2007)

    Article  MATH  Google Scholar 

  21. Caddemi S., Morassi A.: Detecting multiple open cracks in elastic beams by static tests. J. Eng. Mech. (ASCE) 137(2), 113–124 (2011)

    Article  Google Scholar 

  22. Shifrin E.I., Ruotolo R.: Natural frequencies of a beam with an arbitrary number of cracks. J. Sound Vib. 222(3), 409–423 (1999)

    Article  Google Scholar 

  23. Khiem N.T., Lien T.V.: A simplified method for natural frequency analysis of a multiple cracked beam. J. Sound Vib. 245(4), 737–751 (2001)

    Article  Google Scholar 

  24. Li Q.S.: Free vibration analysis of non-uniform beams with an arbitrary number of cracks and concentrated masses. J. Sound Vib. 252(3), 509–525 (2002)

    Article  Google Scholar 

  25. Ruotolo R., Surace C.: Natural frequencies of a bar with multiple cracks. J. Sound Vib. 272, 301–316 (2004)

    Article  Google Scholar 

  26. Binici B.: Vibration of beams with multiple open cracks subjected to axial force. J. Sound Vib. 287, 277–295 (2005)

    Article  Google Scholar 

  27. Wang J., Qiao P.: Vibration of beams with arbitrary discontinuities and boundary conditions. J. Sound Vib. 308, 12–27 (2007)

    Article  Google Scholar 

  28. Irwin G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  29. Irwin, G.R.: Relation of stresses near a crack to the crack extension force. In: 9th Congress Applied Mechanics. Brussels (1957)

  30. Freund L.B., Hermann G.: Dynamic fracture of a beam or plate in plane bending. J. Appl. Mech. 76, 112–116 (1976)

    Article  Google Scholar 

  31. Gounaris G., Dimarogonas A.D.: A finite element of a cracked prismatic beam for structural analysis. Comput. Struct. 28, 309–313 (1988)

    Article  MATH  Google Scholar 

  32. Liebowitz H., Claus W.D.S. Jr.: Failure of notched columns. Eng. Fract. Mech. 1, 379–383 (1968)

    Article  Google Scholar 

  33. Liebowitz H., Vanderveldt H., Harris D.W.: Carrying capacity of notched column. Int. J. Solids Struct. 3, 489–500 (1967)

    Article  Google Scholar 

  34. Ostachowicz W.M., Krawczuk C.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150(2), 191–201 (1991)

    Article  Google Scholar 

  35. Paipetis S.A., Dimarogonas A.D.: Analytical Methods in Rotor Dynamics. Elsevier Applied Science, London (1986)

    Google Scholar 

  36. Chondros T.J., Dimarogonas A.D., Yao J.: A continuous cracked beam vibration theory. J. Sound Vib. 215(1), 17–34 (1998)

    Article  MATH  Google Scholar 

  37. Bilello, C.: Theoretical and Experimental Investigation on Damaged Beams Under Moving Systems. PhD. Thesis. Università degli Studi di Palermo, Italy (2001)

  38. Ruotolo R., Surace C.: Damage assessment of multiple cracked beams: numerical results and experimental validation. J. Sound Vib. 206(4), 567–588 (1997)

    Article  Google Scholar 

  39. Luo H., Hanagud S.: An integral equation for changes in the structural dynamics characteristics of damaged structures. Int. J. Solids Struct. 34(35-36), 4557–4579 (1997)

    Article  MATH  Google Scholar 

  40. Patil D.P., Maiti S.K.: Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements. J. Sound Vib. 281, 439–451 (2005)

    Article  Google Scholar 

  41. Sinha J.K., Friswell M.I., Edwards S.: Simplified models for the location of cracks in beam structures using measured vibration data. J. Sound Vib. 251(1), 13–38 (2002)

    Article  Google Scholar 

  42. Xiaoping Z., Qiang H., Feng L.: Analytical approach for detection of multiple cracks in a beam. J. Eng Mech. (ASCE) 136(3), 345–357 (2010)

    Article  Google Scholar 

  43. Caddemi S., Morassi A.: Multi-cracked Euler–Bernoulli beams: mathematical modeling and exact solutions. Int. J. Solids Struct. 50(16), 944–956 (2013)

    Article  Google Scholar 

  44. Yavari A., Sarkani S., Moyer E.T.: On applications of generalised functions to beam bending problems. Int. J. Solids Struct. 37, 5675–5705 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Caddemi, S., Caliò, I.: Exact closed-form solution for the vibration modes of the Euler-Bernoulli beam with multiple open cracks. J. Sound Vib. 327, 473–489 (2009)

    Google Scholar 

  46. SAP2000® V14, Integrated Software for Structural Analysis & Design, Computers and Structures Inc., Berkeley USA

  47. Okamura H., Liu H.W., Chu C.S., Liebowitz H.: A cracked column under compression. Eng. Fract. Mech. 1, 547–564 (1969)

    Article  Google Scholar 

  48. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Caddemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caddemi, S., Caliò, I. Exact reconstruction of multiple concentrated damages on beams. Acta Mech 225, 3137–3156 (2014). https://doi.org/10.1007/s00707-014-1105-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1105-5

Keywords

Navigation