Skip to main content
Log in

On the stress field and crack nucleation behavior of a disclinated nanowire with surface stress effects

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper studies the stress field and crack nucleation behavior in a disclinated nanowire with a continuum model. The surface stress effects of the nanowire is accounted for with the Gurtin-Murdoch model. The Green’s functions for the stress fields of a single wedge disclination and a single edge dislocation in a cylindrical nanowire are solved respectively with the complex variable method. To make the superposition principle valid, the stress field induced by the residual surface tension is properly handled in the Green’s functions. After that, the distributed dislocation method is applied to simulate the crack nucleation behavior. The influences of the surface stress effects on the stress fields of the wedge disclination and edge dislocation as well as on the Griffith crack nucleation behavior are systematically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li J.C.M.: Disclination model of high angle grain boundaries. Surf. Sci. 31, 12–26 (1972)

    Article  Google Scholar 

  2. Nazarov A.A., Shenderova O.A., Brenner D.W.: On the disclination-structural unit model of grain boundaries. Mater. Sci. Eng. A 281, 148–155 (2000)

    Article  Google Scholar 

  3. Müllner P., Romanov A.E.: Between dislocation and disclination models for twins. Scripta Metall. 31, 1657–1662 (1994)

    Article  Google Scholar 

  4. Valiev R.Z., Islamgaliev R.K., Tumentsev A.N.: The disclincation approach to nanostructured SPD materials. Solid State Phenomena 87, 255–264 (2002)

    Article  Google Scholar 

  5. Ovid’ko I.A., Sheinerman A.G.: Triple junction nanocracks in deformed nanocrystalline materials. Acta Mater. 52, 1201–1209 (2004)

    Article  Google Scholar 

  6. Romanov A.E., Kolesnikova A.L.: Application of disclination concept to solid structures. Prog. Mater. Sci. 54, 740–769 (2009)

    Article  Google Scholar 

  7. Romanov A.E.: Screened disclinations in solids. Mater. Sci. Eng. A 164, 58–68 (1993)

    Article  Google Scholar 

  8. Romanov A.E.: Mechanics and physics of disclinations in solids. Eur. J. Mech. A/Solids 22, 727–741 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rybin V.V., Zhukovskii I.M.: Disclination mechanism of microcrack formation. Sov. Phys. Solid State 20, 1056–1059 (1978)

    Google Scholar 

  10. Lyles R.L., Wilsdorf H.G.F.: Microcrack nucleation and fracture in silver crystals. Acta Metall. 23, 269–277 (1975)

    Article  Google Scholar 

  11. Wu M.S., Zhou H.: Analysis of a crack in a disclinated cylinder. Int. J. Fract. 82, 381–399 (1996)

    Article  Google Scholar 

  12. Gutkin M.Y., Ovid’ko I.A.: Disclinations, amorphization and microcrack generation at grain boundary junctions in polycrystalline solids. Philos. Mag. A 70, 561–575 (1994)

    Article  Google Scholar 

  13. Gryaznov V.G., Kaprelov A.M., Romanov A.E., Polonsky I.A.: Channels of relaxation of elastic stresses in pentagonal nanoparticle. Physica Status Solidi (b) 167, 441–450 (1991)

    Article  Google Scholar 

  14. Zhou K., Nazarov A.A., Wu M.S.: Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire. Phys. Rev. B 73, 045410 (2006)

    Article  Google Scholar 

  15. Wu M.S., Zhou K., Nazarov A.A.: Stability and relaxation mechanisms of a wedge disclination in an HCP bicrystalline nanowire. Model. Simul. Mater. Sci. Eng. 14, 647–661 (2006)

    Article  Google Scholar 

  16. Zhou K., Nazarov A.A., Wu M.S.: Competing relaxation mechanisms in a disclinated nanowire: Temperature and size effects. Phys. Rev. Lett. 98, 035501 (2007)

    Article  Google Scholar 

  17. Mikhailin A.I., Romanov A.E.: Amorphization of a disclination core. Sov. Phys. Solid State 28, 337–338 (1986)

    Google Scholar 

  18. Romanov A.E., Vikarchuk A.A., Kolesnikova A.L., Dorogin L.M., Kink I., Aifantis E.C.: Structural transformations in nano- and microobjects triggered by disclinations. J. Mater. Res. 27, 545–551 (2012)

    Article  Google Scholar 

  19. Duan H.L., Wang J., Huang Z.P., Luo Z.Y.: Stress concentration tensors of inhomogeneities with interface effects. Mech. Mater. 37, 723–736 (2005)

    Article  Google Scholar 

  20. He L.H., Li Z.R.: Impact of surface stress on stress concentration. Int. J. Solids Struct. 43, 6208–6219 (2006)

    Article  MATH  Google Scholar 

  21. Wang G.F., Feng X.Q., Yu S.W.: Interface effects on the diffraction of plane compressional waves by a nanosized spherical inclusion. J. Appl. Phys. 102, 043533 (2007)

    Article  Google Scholar 

  22. Tian L., Rajapakse R.: Elastic field of an isotropic matrix with a nanoscale elliptical inhomogeneity. Int. J. Solids Struct. 44, 7988–8005 (2007)

    Article  MATH  Google Scholar 

  23. Luo J., Wang X.: On the anti-plane shear of an elliptic nano inhomogeneity. Eur. J. Mech. A/Solids 28, 926–934 (2009)

    Article  MATH  Google Scholar 

  24. Dong C.Y.: An integral equation formulation of two-and three-dimensional nanoscale inhomogeneities. Comput. Mech. 49, 309–318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fang X.Q., Zhang L.L., Liu J.X.: Two interacting circular nano-holes with interface effect under anti-plane shear waves. J. Comput. Theor. Nanosci. 8, 603–608 (2011)

    Article  Google Scholar 

  26. Sun L., Wu Y.M., Huang Z.P., Wang J.X.: Interface effect on the effective bulk modulus of a particle-reinforced composite. Acta Mech. Sin. 20, 676–679 (2004)

    Article  Google Scholar 

  27. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chen T., Dvorak G.J., Yu C.C.: Solids containing spherical nano-inclusions with Interface stresses: Effective properties and thermal–mechanical connections. Int. J. Solids Struct. 44, 941–955 (2007)

    Article  MATH  Google Scholar 

  29. Xiao J.H., Xu Y.L., Zhang F.C.: Evaluation of effective electroelastic properties of piezoelectric coated nano-inclusion composites with interface effect under antiplane shear. Int. J. Eng. Sci. 69, 61–68 (2013)

    Article  Google Scholar 

  30. Fang Q.H., Liu Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54, 4213–4220 (2006)

    Article  Google Scholar 

  31. Fang Q.H., Liu Y.W.: Size-dependent elastic interaction of a screw dislocation with a circular nano-inhomogeneity incorporating interface stress. Scripta Mater. 55, 99–102 (2006)

    Article  Google Scholar 

  32. Shodja H.M., Ahmadzadeh-Bakhshayesh H., Gutkin M.Y.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49, 759–770 (2012)

    Article  Google Scholar 

  33. Luo J., Xiao Z.M.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47, 883–893 (2009)

    Article  MathSciNet  Google Scholar 

  34. Luo J., Liu F.: Stress analysis of a wedge disclination dipole interacting with a circular nano inhomogeneity. Eur. J. Mech. A/Solids 30, 22–32 (2011)

    Article  MATH  Google Scholar 

  35. Wang G.F., Feng X.Q., Wang T.J., Gao W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75, 011001-1 (2008)

    Google Scholar 

  36. Fu X.L., Wang G.F., Feng X.Q.: Surface effects on the near-tip stress fields of a mode-II crack. Int. J. Fract. 151, 95–106 (2008)

    Article  MATH  Google Scholar 

  37. Luo, J.: On the stress field and dislocation emission of an elliptically blunted mode III crack with surface stress effect. In: IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. Springer Netherlands, pp. 277–287 (2013)

  38. Wang J., Huang Z.P., Duan H.L., Yu S.W., Feng X.Q., Wang G.F., Zhang W.X., Wang T.J.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  Google Scholar 

  39. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gurtin M.E., Weissmuller J., Larche F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  41. Gerasoulis A.: The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type. Comput. Math. Appl. 8, 15–22 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  42. Luo J., Zhou K., Xiao Z.M.: Stress investigation on a Griffith crack initiated from an eccentric disclination in a cylinder. Acta Mech. 202, 65–77 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Li, Z. & Xiao, Z. On the stress field and crack nucleation behavior of a disclinated nanowire with surface stress effects. Acta Mech 225, 3187–3197 (2014). https://doi.org/10.1007/s00707-014-1104-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1104-6

Keywords

Navigation