Skip to main content
Log in

On the line geometry of rigid-body inertia

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, several classical ideas concerning the geometry of the inertia of a rigid body are revisited. This is done using a modern approach to screw theory. A screw, or more precisely a twist, is viewed as an element of the Lie algebra to the group of proper rigid-body displacements. Various moments of inertia, about lines, planes and points are considered as geometrical objects resulting from least-squares problems. This allows relations between the various inertias to be found quite simply. A brief review of classical line geometry is given; this includes an outline of the theory of the linear line complex and a brief introduction to quadratic line complexes. These are related to the geometry of the inertia of an arbitrary rigid body. Several classical problems concerning the mechanics of rigid bodies subject to impulsive wrenches are reviewed. We are able to correct a small error in Ball’s seminal treatise. The notion of spatial percussion axes is introduced, and these are used to solve a problem concerning the diagonalisation of the mass matrix of a two-joint robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball R.S.: Researches in the dynamics of a rigid body by the aid of the theory of screws. Philos. Trans. R. Soc. Lond. 164, 15–40 (1874)

    Article  MATH  Google Scholar 

  2. Ball R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)

    Google Scholar 

  3. Bottema O., Roth B.: Theoretical Kinematics. Dover Publications, New York (1990)

    MATH  Google Scholar 

  4. Bruchheim A.: A memoir on biquaternions. Am. J. Math. 7, 293–326 (1885)

    Article  Google Scholar 

  5. Demoulin A.: Sur le complexe des droites par lesquelles on peut mener à une quadrique deux planes tangents rectangulaires. Bulletin de la Société Mathematique de France 20, 122–132 (1892)

    MathSciNet  MATH  Google Scholar 

  6. Fouret, G.: Notions Géométriques sur les Complexes et les Congruence de Droites. In: Schoenflies, A.M. Appendix to Géométrie de Mouvement, Gauthier-Villars et fils, Paris (1893)

  7. Gibson C.G., Hunt K.H.: Geometry of Screw Systems I & II. Mech. Mach. Theory 25, 1–27 (1990)

    Article  Google Scholar 

  8. Hilbert, D., Cohn-Vossen, S.:Geometry and the Imagination, vol 87. AMS Chelsea Publishing Series, American Mathematical Society (1999)

  9. Hudson R.W.H.T.: Kummer’s Quartic Surface. Cambridge University Press, Cambridge (1905)

    MATH  Google Scholar 

  10. Ivory, J.: On the Attractions of Homogeneous Ellipsoids. Philos. Trans. R. Soc. Lond., 345–372 (1809)

  11. Jessop C.M.: A Treatise on the Line Complex. Cambridge University Press, Cambridge (1903)

    MATH  Google Scholar 

  12. Laub A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia, PA (2004)

    Google Scholar 

  13. Painvin, L.F.: Ètude d’un complexe du second ordre. Nouvelles Annales de Mathématiques, 2e série, tome 11, pp. 49–60, pp. 97–107, pp. 202–210, pp. 481–500, pp. 529–539, (1872)

  14. Rees E.L.: Line complexes in kinematics. Am. Math. Mon. 35, 296–299 (1928)

    Article  Google Scholar 

  15. Salmon G.: A Treatise on the Analytical Geometry of Three Dimensions. Hodges & Figis, Dublin (1882)

  16. Selig J.M.: Geometric Fundamentals of Robotics. Springer, New York (2005)

    MATH  Google Scholar 

  17. Selig, J.M.: The Complex of Lines from Successive Points and the Horopter. In: IEEE international conference on robotics and automation, pp. 2380–2385. Pasadena, CA (2008)

  18. Semple J.G., Kneebone G.T.: Algebraic Projective Geometry. Clarendon Press, Oxford (1952)

    MATH  Google Scholar 

  19. Smith C.: An Elementary Treatise on Solid Geometry. Macmillan, London (1920)

  20. Tischler, C.R., Downing, D.M., Lucas, S.R., Martins, D.: Rigid-body inertia and screw geometry. In: Proceedings of a symposium commemorating the legacy, works, and life of Sir Robert Stawell Ball upon the 100th anniversary of a treatise on the theory of screws. Cambridge (2000)

  21. Wolkowitsch D.: Sur les application de la notion de moment d’inertie en Géométrie, Memorial des Sciences Mathematiques vol. 121. Gauthier-Villars, Paris (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Selig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selig, J.M., Martins, D. On the line geometry of rigid-body inertia. Acta Mech 225, 3073–3101 (2014). https://doi.org/10.1007/s00707-014-1103-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1103-7

Keywords

Navigation