Skip to main content
Log in

Elasto-plastic analysis of critical fracture stress and fatigue fracture prediction

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The purpose of this investigation is to obtain the critical fracture stress, σf, in a cracked elasto-plastic plate subjected to mixed-mode loading. A new model estimating the magnitude of critical fracture stress based on the plastic zone during crack propagation is developed. Subsequently, this concept is applied to predict crack growth due to fatigue loads. Apart from the obvious and ideal benefits of being able to quantify crack propagation rates without the necessity to determine empirical coefficients and exponents experimentally, such an approach would lead to a better understanding of the factors which affect the crack growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King A., Ludwig W., Herbig M., Buffière J.-Y., Khan A.A., Stevens N., Marrow T.J.: Three-dimensional in situ observations of short fatigue crack growth in magnesium. Acta Mater. 59(17), 6761–6771 (2011)

    Article  Google Scholar 

  2. Mirsalimov V.M., Rustamov B.E.: Interaction of prefracture zones and crack-visible cavity in a burning solid with mixed boundary conditions. Acta Mech. 223(3), 627–643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Souza F.V., Allen D.H.: Modeling the transition of microcracks into macrocracks in heterogeneous viscoelastic media using a two-way coupled multiscale model. Int. J. Solids Struct. 48(22–23), 3160–3175 (2011)

    Article  Google Scholar 

  4. Konstantinos I.: Tserpes strength of graphenes containing randomly dispersed vacancies. Acta Mech. 223(4), 669–678 (2012)

    Article  MATH  Google Scholar 

  5. Griffith A.A.: The phenomena of rupture and flow in solids. Trans. R. Soc. Lond. A-221, 163–198 (1920)

    Google Scholar 

  6. Hussain M.A., Pu S.L., Underwood J.: Strain energy release rate for a crack under combined mode I and mode II. Fract. Anal. ASTM STP 560, 2–28 (1974)

    Google Scholar 

  7. Erdogan F., Sih G.C.: On the crack extension in plates under plane loading and transverse shear. ASME J. Basic Eng. 85, 519–527 (1963)

    Article  Google Scholar 

  8. Sih G.C.: Strain–energy–density factor applied to mixed mode crack problems. Int. J. Fract. 10(3), 305–321 (1974)

    Article  Google Scholar 

  9. BS 5447, k 1c Fracture Toughness Testing, British StandardsInstitution (2000)

  10. Paris P.C., Erdogan F.: A critical analysis of crack propagation laws. ASME J. Basic Eng. Ser. D 85, 528–539 (1963)

    Article  Google Scholar 

  11. Cooke R.J., Irving P.E., Booth G.S., Beevers C.J.: The slow fatigue crack growth and threshold behaviour of a medium carbon alloy steel in air and vacuum. Eng. Fract. Mech. 7(1), 69–77 (1975)

    Article  Google Scholar 

  12. Jaubert A., Marigo J.J.: Justification of Paris-type fatigue laws from cohesive forces model via a variational approach. Contin. Mech. Thermodyn. 18(1–2), 23–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bian L.: Material plasticity dependence of mixed mode fatigue crack growth in commonly used engineering materials. Int. J. Solids Struct. 44(25–26), 8440–8456 (2007)

    Article  MATH  Google Scholar 

  14. Bian L., Fawaz Z., Behdinan K.: An improved model for predicting the crack size and plasticity dependence of fatigue crack propagation. Int. J. Fatigue 30(7), 1200–1210 (2008)

    Google Scholar 

  15. Bian L.: Crack growth prediction and non-linear analysis for an elasto-plastic solid. Int. J. Eng. Sci. 47, 325–341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sih, G.C.: Three dimensional crack problems. In: Mechanics of Fracture 2 Noordhoff, Netherlands (1975)

  17. Gillemot L.F.: Criterion of crack initiation and spreading. Eng. Fract. Mech. 8(1), 239–253 (1976)

    Article  Google Scholar 

  18. Irwin G.R.: Linear fracture mechanics. Eng. Fract. Mech. 1, 241–287 (1968)

    Article  Google Scholar 

  19. Liebowitz H., Rice J.R.: Fracture, vol. II. Academic Press, New York (1968)

    Google Scholar 

  20. Schwalbe K.H.: Comparison of several fatigue crack propagation laws with experimental results. Eng. Fract. Mech. 6(2), 325–341 (1974)

    Article  Google Scholar 

  21. Kanazawa T., Machida S., Itoga K.: On the effect of cyclic stress ratio on the fatigue crack propagation. Eng. Fract. Mech. 7(3), 445–455 (1975)

    Article  Google Scholar 

  22. Pilkey W.D.: Formulas for Stress, Strain, and Structural Matrices. A Wiley-Interscience Publication, New York (1994)

    MATH  Google Scholar 

  23. Qian J., Fatemi A.: Fatigue crack growth under mixed mode I and II loading. Fatigue Fract. Eng. Mater. Struct. 19(10), 1277–1284 (1996)

    Article  Google Scholar 

  24. Jeong D.Y.: Application of effective stress intensity factor crack closure model to evaluate train load sequence effects on crack growth rates. Theor. Appl. Fract. Mech. 22, 43–50 (1995)

    Article  Google Scholar 

  25. Khen R., Altus E.: Effect of static-mode on fatigue-crack growth by a unified micromechanic model. Mech. Mater. 21(3), 169–189 (1995)

    Article  Google Scholar 

  26. Bulloch J.H.: Effects of mean stress on the threshold fatigue crack extension rates of two spheroidal graphite cast irons. Theor. Appl. Fract. Mech. 18, 15–30 (1992)

    Article  Google Scholar 

  27. Bian L., Taheri F.: A proposed maximum ratio criterion applied to mixed mode fatigue crack propagation. Mater. Des. 32(4), 2066–2072 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lichun Bian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, L., Cheng, Y. & Taheri, F. Elasto-plastic analysis of critical fracture stress and fatigue fracture prediction. Acta Mech 225, 3059–3072 (2014). https://doi.org/10.1007/s00707-014-1102-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1102-8

Keywords

Navigation