Skip to main content
Log in

Development of finite element models for studying the electrical excitation of myocardium

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The propagation of the electrical excitation wave in the isotropic and anisotropic finite element models of the myocardium is studied. The geometrical image of the heart is constructed on the basis of magnetic resonance tomography (MRT) data by the region growing method. A filtering algorithm is proposed for elimination of excess details. The propagation of the myocardium excitation impulse is described in the framework of the monodomain model of conductivity. The Aliev–Panfilov and Beeler–Reuter equations are used to relate the transmembrane current to transmembrane potential. The model equations are solved by the splitting method. The influence of the degree of approximation on the performance of the finite element model is investigated. The interaction between the additional excitation source and the propagating excitation wave is considered. The proposed model allowed us to trace the propagation of the excitation impulse through the curvilinear isotropic media and in the 3D image of the heart obtained on the basis of MRT data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrov V.G.: Mechano-mathematical model of cardiac fibre length-pressure pulsations. Acta Mechanica. 87, 239–250 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Treece G.M., Prager R.W.: Surface interpolation from sparse cross sections using region correspondence. Trans. Med. Imaging 19(11), 23–29 (2000)

    Article  Google Scholar 

  3. Li B., Acton S.: Active contour external force using vector field convolution for image segmentation. Trans. Med. Imaging 16(8), 38–44 (2007)

    MathSciNet  Google Scholar 

  4. Heimann T., Meinzer H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13, 543–563 (2009)

    Article  Google Scholar 

  5. Del Fresno M., Vénere M.: Combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans. Comput. Med. Imaging Gr. 33, 369–376 (2009)

    Article  Google Scholar 

  6. Vadakkumpadan F. et al.: Image-based models of cardiac structure in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 489–506 (2010)

    Article  Google Scholar 

  7. Sundnes J., Lines G.T, Xing Cai, Nielsen B.F., Mardal K.-A., Tveito A.: Computing the Electrical Activity in the Heart. Springer, Berlin (2006)

    MATH  Google Scholar 

  8. Sachse F.B.: Computational Cardiology. Modelling of Anatomy, Electrophysiology and Mechanics. Springer, Berlin (2004)

    Book  Google Scholar 

  9. http://www.code-aster.org

  10. http://cmrg.ucsd.edu/

  11. http://www.cs.ox.ac.uk/chaste/

  12. http://www.febio.org/

  13. http://sourceforge.net/apps/mediawiki/opencmiss/

  14. http://www.dealii.org/

  15. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4) article 24 (2007)

    Google Scholar 

  16. http://libmesh.sourceforge.net/

  17. Kirk B., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)

    Article  Google Scholar 

  18. http://atlas.gcsc.uni-frankfurt.de/~ug/

  19. Bastian P., Birken K., Johannsen K., Lang S., Neuß N., Rentz-Reichert H., Wieners C.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1), 27–40 (1997)

    Article  MATH  Google Scholar 

  20. http://dune.mathematik.uni-freiburg.de/

  21. Dender, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A Generic Interface for Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-FEM Module. Preprint No. 3, Mathematisches Institut, Universität Freiburg (2009)

  22. http://download.gna.org/getfem/html/homepage/

  23. http://www.freefem.org/ff++/

  24. http://fenicsproject.org/

  25. Logg A., Mardal K.-A., Wells G.N. et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  26. Logg, A., Wells, G. N.: DOLFIN: automated finite element computing. ACM Trans. Math. Soft. 37(2) (2010)

  27. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw. 32(3) (2006)

  28. Rudraraju, S., Mills, K. L., Kemkemer, R., Garikipati, K.: Multiphysics modeling of reactions, mass transport and mechanics of tumor growth. In: Holzapfel, G., Kuhl, E.(eds.) Computer Models in Biomechanics, pp. 293–303. Spinger, Berlin (2013)

  29. Steigemann M., Schramm B.: Precise computation and error control of stress intensity factors and certain integral characteristics in anisotropic inhomogeneous materials. Int. J. Fract. 182, 67–91 (2013)

    Article  Google Scholar 

  30. Leonard, K.: Multiphase modelling of tissue engineering. In: Proceedings of the University of Oxford Department of Computer Science Student Conference 2011, pp. 18–19 (2011)

  31. Vavourakis V., Loukidis D., Charmpis D. C., Papanastasiou P.: A robust finite element approach for large deformation elastoplastic plane-strain problems. Finite Elem. Anal. Des. 77, 1–15 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bordas R.M., Gillow K., Gavaghan D., Rodriguez B., Kay D.: A bidomain model of the ventricular specialized conduction system of the heart. SIAM J. Appl. Math. 72(5), 1618–1643 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Brinkmeier M., Nackenhorst U., Petersen S., Estorff O.von.: A numerical model for the simulation of tire rolling noise. J. Sound Vib. 309(1–2), 20–39 (2008)

    Article  Google Scholar 

  34. Lu S. et al.: Multiscale modeling in rodent ventricular myocytes. IEEE Eng. Med. Biol. Mag. 28(2), 46–57 (2009)

    Article  Google Scholar 

  35. Matveenko V.P., Shardakov I.N., Shestakov A.P.: The algorithm for constructing 3D images of th human body organs based on the tomographic data. Russ. J. Biomech. 5(4), 20–32 (2011)

    Google Scholar 

  36. Matveenko V.P., Shardakov I.N., Shestakov A.P.: Development of finite element models of human skeleton bones and their application to the natural vibration problem. Comput. Mech. Contin. Media 5(3), 308–312 (2012)

    Article  Google Scholar 

  37. Kim W.-J., Kim S.-D.: 3D binary morphological operations using run-length representation. Signal Process. Image Commun. 23, 442–450 (2008)

    Article  Google Scholar 

  38. http://www.osirix-viewer.com/datasets/ (Access data 17/07/2013)

  39. Pratt, W.K.: Digital Image Processing. New York (1978)

  40. Aliev R.R., Panfilov A.V.: A simple model of cardiac excitation. Chaos Solitons Fract. 7(3), 293–301 (1996)

    Article  Google Scholar 

  41. Nash M.P., Panfilov A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004)

    Article  Google Scholar 

  42. Beeler G.W., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 268(1), 177–210 (1977)

    Google Scholar 

  43. http://models.cellml.org/cellml/

  44. Whiteley J.P, Bishop M.J., Gavaghan D.J.: Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations. Bull. Math. Biol. 69(7), 2199–2225 (2007)

    MATH  MathSciNet  Google Scholar 

  45. Nash M.P., Hunter P.J.: Computational mechanics of the heart. J. Elast. 61(1–3), 113–141 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Usyk T.P., Mazhari R., McCulloch A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61(1–3), 143–164 (2000)

    Article  MATH  Google Scholar 

  47. Sainte-Marie J., Chapelle D., Cimrman R., Sorine M.: Modeling and estimation of the cardiac electromechanical activity. Comput. Struct. 84(28), 1743–1759 (2006)

    Article  MathSciNet  Google Scholar 

  48. Izakov V.Y., Katsnelson L.B., Blyakhman F.A., Markhasin V.S., Shklyar T.F.: Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading. Circ. Res. 69(5), 1171–1184 (1991)

    Article  Google Scholar 

  49. Hunter P.J., McCulloch A.D., ter Keurs H.E.D.J.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289–331 (1998)

    Article  Google Scholar 

  50. Nickerson D.P, Smith N.P., Hunter P.J.: A model of cardiac cellular electromechanics. Philos. Trans. R. Soc. Lond. A 359, 1159–1172 (2001)

    Article  MATH  Google Scholar 

  51. Nardinocchi P., Teresi L.: On the active response of soft living tissues. J. Elast. 88, 27–39 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ambrosi D., Pezzuto S.: Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 10(2), 199–212 (2012)

    Article  MathSciNet  Google Scholar 

  53. Zabel M., Koller B.S., Sachs F., Franz M.R.: Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc. Res. 32, 120–130 (1996)

    Article  Google Scholar 

  54. Rush S., Larsen H.: A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME 25(4), 389–392 (1978)

    Article  Google Scholar 

  55. https://launchpad.net/cbc.solve

  56. Göktepe S., Kuhl E.: Computational modeling of cardiac electrophysiology: a novel finite element approach. Int. J. Numer. Methods Eng. 79, 156–178 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Wasserman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveenko, V.P., Shardakov, I.N., Shestakov, A.P. et al. Development of finite element models for studying the electrical excitation of myocardium. Acta Mech 225, 2699–2715 (2014). https://doi.org/10.1007/s00707-014-1088-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1088-2

Keywords

Navigation