Advertisement

Acta Mechanica

, Volume 225, Issue 9, pp 2549–2562 | Cite as

Enhanced mechanical properties of ZnO nanowire-reinforced nanocomposites: a size-scale effect

  • Kasra Momeni
Article
  • 320 Downloads

Abstract

A multiscale approach is pursued to develop a shear-lag model in combination with core–surface and core–shell models for capturing size-scale effect on mechanical properties of ZnO nanowire (NW)-reinforced nanocomposites. Surface effects are represented by a zero-thickness (finite-thickness) surface with different elastic modulus from the central part of NW. The molecular dynamics technique is utilized for calculating thickness of the shell in the core–shell model. Linear elasticity for an axisymmetric problem and the cylindrical coordinate system is used to find the closed form of governing equations. The effect of different parameters, including diameter and aspect ratio of NWs, is studied to demonstrate the application of the developed model. Numerical results disclose that NWs with a larger aspect ratio and a smaller diameter can carry a larger portion of applied stress and are preferable in designing high-performance nanocomposites. This result is in agreement with the reported computational and experimental data.

Keywords

Elastic Modulus Shell Model Representative Volume Element Large Aspect Ratio Interfacial Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Desai A.V., Haque M.A.: Mechanical properties of ZnO nanowires. Sens. Actuat. A-Phys. 134(1), 169–176 (2007)CrossRefGoogle Scholar
  2. 2.
    Chen C.Q., Shi Y., Zhang Y.S., Zhu J., Yan Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505 (2006)CrossRefGoogle Scholar
  3. 3.
    Zhou J., Fei P., Gao Y., Gu Y., Liu J., Bao G., Wang Z.L.: Mechanical–electrical triggers and sensors using piezoelectric micowires/nanowires. Nano Lett. 8(9), 2725–2730 (2008)CrossRefGoogle Scholar
  4. 4.
    Gao P.X., Song J., Liu J., Wang Z.L.: Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Adv. Mater. 19(1), 67–72 (2007)CrossRefGoogle Scholar
  5. 5.
    Wang Z.L.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)CrossRefGoogle Scholar
  6. 6.
    Wang X., Song J., Liu J., Wang Z.L.: Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007)CrossRefGoogle Scholar
  7. 7.
    Gao Y., Wang Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007)CrossRefGoogle Scholar
  8. 8.
    Hu J.: Surface effect on the size-and orientation-dependent elastic properties of single-crystal ZnO nanostructures. J. Appl. Phys. 105(3), 034302 (2009)CrossRefGoogle Scholar
  9. 9.
    Asthana A., Momeni K., Prasad A., Yap Y.K., Yassar R.S.: In situ observation of size-scale effects on the mechanical properties of ZnO nanowires. Nanotechnology 22(26), 265712 (2011)CrossRefGoogle Scholar
  10. 10.
    Xu F., Qin Q., Mishra A., Gu Y., Zhu Y.: Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 3(4), 271–280 (2010)CrossRefGoogle Scholar
  11. 11.
    Xu S., Qin Y., Xu C., Wei Y., Yang R., Wang Z.L.: ’-powered nanowire devices. Nat. Nanotechnol. 5(5), 366–373 (2010)CrossRefGoogle Scholar
  12. 12.
    Momeni K., Odegard G.M., Yassar R.S.: Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires. J. Appl. Phys. 108(11), 114303 (2010)CrossRefGoogle Scholar
  13. 13.
    Momeni K., Mortazavi S.M.Z.: Optimal aspect ratio of zinc oxide nanowires for a nanocomposite electrical generator. J. Comput. Theor. Nanosci. 9(10), 1670–1674 (2012)CrossRefGoogle Scholar
  14. 14.
    Qian D., Dickey E.C., Andrews R., Rantell T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRefGoogle Scholar
  15. 15.
    Frankland S.J.V., Harik V.M.: Analysis of carbon nanotube pull-out from a polymer matrix. Surf. Sci. 525, L103–L108 (2003)CrossRefGoogle Scholar
  16. 16.
    Liao K., Li S.: Interfacial characteristics of a carbon nanotube-polystyrene composite system. Appl. Phys. Lett. 79(25), 4225–4227 (2001)CrossRefGoogle Scholar
  17. 17.
    Daniel Wagner H.: Nanotube-polymer adhesion: a mechanics approach. Chem. Phys. Lett. 361(1–2), 57–61 (2002)Google Scholar
  18. 18.
    Meguid S.A., Wernik J.M., Cheng Z.Q.: Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int. J. Solids Struct. 47(13), 1723–1736 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Cox H.L.: The elasticity and strength of paper and other fibrous materials. British J. Appl. Phys. 3(3), 72 (1952)CrossRefGoogle Scholar
  20. 20.
    Nilsson S.G., Borrise X., Montelius L.: Size effect on Young’s modulus of thin chromium cantilevers. Appl. Phys. Lett. 85(16), 3555–3557 (2004)CrossRefGoogle Scholar
  21. 21.
    Li X., Ono T., Wang Y., Esashi M.: Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83(15), 3081–3083 (2003)CrossRefGoogle Scholar
  22. 22.
    Segall D.E., Ismail-Beigi S., Arias T.A.: Elasticity of nanometer-sized objects. Phys. Rev. B 65, 214109 (2002)CrossRefGoogle Scholar
  23. 23.
    Shenoy V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)CrossRefGoogle Scholar
  24. 24.
    Kulkarni A.J., Zhou M., Ke F.J.: Orientation and size dependence of the elastic properties of zinc oxide nanobelts. Nanotechnology 16(12), 2749–2756 (2005)CrossRefGoogle Scholar
  25. 25.
    Broughton J.Q., Meli C.A., Vashishta P., Kalia R.K.: Direct atomistic simulation of quartz crystal oscillators: bulk properties and nanoscale devices. Phys. Rev. B 56, 611–618 (1997)CrossRefGoogle Scholar
  26. 26.
    Wen B., Sader J.E., Boland J.J.: Mechanical properties of ZnO nanowires. Phys. Rev. Lett. 101, 175502 (2008)CrossRefGoogle Scholar
  27. 27.
    Majdoub M.S., Sharma P., Cagin T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)CrossRefGoogle Scholar
  28. 28.
    Song J., Wang X., Riedo E., Wang Z.L.: Elastic property of vertically aligned nanowires. Nano Lett. 5(10), 1954–1958 (2005)CrossRefGoogle Scholar
  29. 29.
    Ni H., Li X.: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17(14), 3591–3597 (2006)CrossRefGoogle Scholar
  30. 30.
    Meyer B., Marx D.: Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 67, 035403 (2003)CrossRefGoogle Scholar
  31. 31.
    Zhang L., Huang H.: Young’s moduli of ZnO nanoplates: ab initio determinations. Appl. Phys. Lett. 89(18), 183111 (2006)CrossRefGoogle Scholar
  32. 32.
    Sun C.T., Zhang H.: Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 93(2), 1212–1218 (2003)CrossRefGoogle Scholar
  33. 33.
    Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)CrossRefGoogle Scholar
  34. 34.
    Tang M., Carter W.C., Cannon R.M.: Grain boundary transitions in binary alloys. Phys. Rev. Lett. 97, 075502 (2006)CrossRefGoogle Scholar
  35. 35.
    Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. An. 57(4), 291–323 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Cammarata R.C.: Surface and interface stress effects on the growth of thin films. J. Electron. Mater. 26(9), 966–968 (1997)CrossRefGoogle Scholar
  37. 37.
    Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)CrossRefGoogle Scholar
  38. 38.
    Cammarata R.C.: Surface and interface stress effects in thin-films. Prog. Surf. Sci. 46(1), 1–38 (1994)Google Scholar
  39. 39.
    Newnham R.E.: Structure–Property Relations. Springer, Berlin (1975)Google Scholar
  40. 40.
    Dai S., Dunn M.L., Park H.S.: Piezoelectric constants for ZnO calculated using classical polarizable core–shell potentials. Nanotechnology 21(44), 445707 (2010)CrossRefGoogle Scholar
  41. 41.
    Jason Binks D., Grimes Robin W.: The non-stoichiometry of zinc and chromium excess zinc chromite. Solid State Commun. 89(11), 921–924 (1994)CrossRefGoogle Scholar
  42. 42.
    Wolf D., Keblinski P., Phillpot S.R., Eggebrecht J.: Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r[sup −1] summation. J. Chem. Phys. 110(17), 8254–8282 (1999)Google Scholar
  43. 43.
    Momeni K., Odegard G.M., Yassar R.S.: Finite size effect on the piezoelectric properties of ZnO nanobelts: a molecular dynamics approach. Acta Materialia 60(13–14), 5117–5124 (2012)CrossRefGoogle Scholar
  44. 44.
    Momeni, K., Attariani, H.: Electromechanical properties of 1D ZnO nanostructures: nanopiezotronics building blocks, surface and size-scale effects. Phys. Chem. Chem. Phys. (2014). doi: 10.1039/C3CP54456G. http://dx.doi.org/10.1039/C3CP54456G
  45. 45.
    Sun C.Q., Tay B.K., Zeng X.T., Li S., Chen T.P., Zhou Ji., Bai H.L., Jiang E.Y.: Bond-order–bond-length–bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. J. Phys.-Condens. Mat. 14(34), 7781 (2002)Google Scholar
  46. 46.
    Tagantsev A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986)CrossRefGoogle Scholar
  47. 47.
    Haggenmueller R., Gommans H.H., Rinzler A.G., Fischer J.E., Winey K.I.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)Google Scholar
  48. 48.
    Gao X., Li K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42(5-6), 1649–1667 (2005)CrossRefzbMATHGoogle Scholar
  49. 49.
    Li C.Y., Chou T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)CrossRefGoogle Scholar
  50. 50.
    Gao Y., Wang Z.L.: Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 7(8), 2499–2505 (2007)CrossRefGoogle Scholar
  51. 51.
    Nairn J.A.: On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)CrossRefGoogle Scholar
  52. 52.
    Desai A.V., Haque M.A.: Influence of electromechanical boundary conditions on elasticity of zinc oxide nanowires. Appl. Phys. Lett. 91(18), 183106 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Aerospace Engineering DepartmentIowa State UniversityAmesUSA

Personalised recommendations