Skip to main content
Log in

Effects of uniform interior pressure distribution on vibration of FGM cylindrical shell with rings support based on first-order theory subjected to ten boundary conditions

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the study on natural frequency characteristics of a thin-walled functionally graded material (FGM) cylindrical shell with rings support under symmetric uniform interior pressure distribution. The FGM properties are graded along the thickness direction of the shell. The FGM shell equations with rings support and interior pressure are established based on first-order shear deformation theory. The governing equations of motion were employed, using energy functional and by applying the Ritz method. Ten boundary conditions represented by end conditions of the FGM shell are the following: simply supported-simply supported, clamped-clamped, free-free, clamped-free, clamped-simply supported, free-simply supported, sliding-sliding, sliding-simply supported, sliding-free and sliding-clamped. This problem was solved with computer programming using MAPLE package for numerical investigation. Comparison of the results is carried out to verify the validity of the proposed procedure with published works. The influence of interior pressure, ring support position and number of rings support, and effect of the ten boundary conditions on natural frequency characteristics are studied. The results presented can be used as an important benchmark for researchers to validate their numerical methods when studying natural frequencies of shells with ring and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qatu M.S.: Recent research advances in the dynamic behavior of shells. Appl. Mech. Rev. 55, 415–434 (2002)

    Article  Google Scholar 

  2. Sechler E.E.: Thin-shell structures theory experiment and design. Englewood Cliffs, Prentice-Hall, California, NJ (1974)

    Google Scholar 

  3. Al-Najafi A.M.J., Warburton G.B.: Free vibration of ring-stiffened cylindrical shells. J. Sound Vib. 13, 9–25 (1970)

    Article  Google Scholar 

  4. Sharma C.B., Johns D.J.: Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shell. J. Sound Vib. 14, 459–474 (1971)

    Article  MATH  Google Scholar 

  5. Schneidera W., Zahltenb W.: Load-bearing behaviour and structural analysis of slender ring-stiffened cylindrical shells under quasi-static wind load. J. Constr. Steel. Res. 60, 125–146 (2004)

    Article  Google Scholar 

  6. Yan J., Li T.Y., Liu T.G., Liu J.X.: Characteristics of the vibrational power flow propagation in a submerged periodic ring-stiffened cylindrical shell. Appl. Acoust. 67, 550–569 (2006)

    Article  Google Scholar 

  7. Wang R.T., Lin Z.X.: Vibration analysis of ring-stiffened cross-ply laminated cylindrical shells. J. Sound Vib. 295, 964–987 (2006)

    Article  Google Scholar 

  8. Pan Z., Li X., Ma J.: A study on free vibration of a ring-stiffened thin circular cylindrical shell with arbitrary boundary conditions. J. Sound Vib. 314, 330–342 (2008)

    Article  Google Scholar 

  9. Gan L., Li X., Zhang Z.: Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach. J. Sound Vib. 326, 633–646 (2009)

    Article  Google Scholar 

  10. Zhou X.: Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid. Acta Mech. Solid. Sin. 25, 168–176 (2012)

    Article  Google Scholar 

  11. Qu Y., Chen Y., Long X., Hua H., Meng G.: A modified variational approach for vibration analysis of ring-stiffened conical-cylindrical shell combinations. Eur. J. Mech. A-Solids 37, 200–215 (2013)

    Article  MathSciNet  Google Scholar 

  12. Arnold R.N., Warburton G.B.: The flexural vibrations of thin cylinders. P. I. Mech. Eng. 167, 62–80 (1953)

    Google Scholar 

  13. Leissa, A.W.: Vibration of shells. NASA SP-288, 1973; Reprinted by Acoustical Society of America. America Institute of Physics (1993)

  14. Blevins R.D.: Formulas for natural frequency and mode shape. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  15. Soedel W.: A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions. J. Sound Vib. 70, 309–317 (1980)

    Article  Google Scholar 

  16. Chung H.: Free vibration analysis of circular cylindrical shells. J. Sound Vib. 74, 331–359 (1981)

    Article  MATH  Google Scholar 

  17. Reddy J.N.: Mechanics of laminated composite plates and shells. 2nd edn. CRC Press, New York (2004)

    Google Scholar 

  18. Soedel W.: Vibration of shells and plates. 3rd edn. Marcel Dekker Inc, New York (2004)

    Google Scholar 

  19. Forsberg K.: Influence of boundary conditions on modal characteristics of cylindrical shells. AIAA J. 2, 182–189 (1964)

    Article  Google Scholar 

  20. Ramamurti V.: Dynamic behaviour of a cylindrical shell with a cutout. J. Sound Vib. 52, 193–200 (1977)

    Article  Google Scholar 

  21. Amabili M., Paidoussis M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid–structure interaction. Appl. Mech. Rev. 56, 56–349 (2003)

    Article  Google Scholar 

  22. Shen S., Xing J., Fan F.: Dynamic behavior of single-layer latticed cylindrical shells subjected to seismic loading. Earthq. Eng. Eng. Vib. 2, 269–279 (2003)

    Article  Google Scholar 

  23. Gonçalvesa P.B., Pradob Z.G.: Effect of non-linear modal interaction on the dynamic instability of axially excited cylindrical shells. Comput. Struct. 82, 2621–2634 (2004)

    Article  Google Scholar 

  24. Pellicano F.: Dynamic stability and sensitivity to geometric imperfections of strongly compressed circular cylindrical shells under dynamic axial loads. Commun. Nonlinear Sci. 14, 3449–3462 (2009)

    Article  MATH  Google Scholar 

  25. Thinh T.I., Nguyen M.C.: Dynamic stiffness matrix of continuous element for vibration of thick cross-ply laminated composite cylindrical shells. Compos. Struct. 98, 93–102 (2013)

    Article  Google Scholar 

  26. Suresh S., Mortensen A.: fundamentals of functionally gradient materials. The Institute of Materials. IOM Communications Ltd, London (1998)

    Google Scholar 

  27. Birman V., Byrd L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195–216 (2007)

    Article  Google Scholar 

  28. Niino M., Hirai T., Watanabe R.: The functionally gradient materials aimed at heat resisting materials for space plant. J. Jpn. Soc. Compos. Mat. 13, 257–264 (1987)

    Article  Google Scholar 

  29. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I. (eds): Proceedings of the First International Symposium on Functionally Gradient Materials. Sendai, Japan, (1990)

  30. Zhua J., Laia Z., Yina Z., Jeonb J., Leeb S.: Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68, 130–135 (2001)

    Article  Google Scholar 

  31. Groves J.F., Wadley H.N.G.: Functionally graded materials synthesis via low vacuum directed vapor deposition. Compos. B-Eng. 28, 57–69 (1997)

    Article  Google Scholar 

  32. Ogawa T., Watanabe Y., Satob H., Kima I., Fukuic Y.: Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method. Compos. A Appl. Sci. 37, 2194–2200 (2006)

    Article  Google Scholar 

  33. Xua A., Shaw L.L.: Equal distance offset approach to representing and process planning for solid freeform fabrication of functionally graded materials. Comput. Aided Des. 37, 1308–1318 (2005)

    Article  Google Scholar 

  34. Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A., Ford R.G.: Functionally graded materials: design, processing and applications. Kluwer Academic Publishers, London (1999)

    Book  Google Scholar 

  35. Sofiyev A.H.: The stability of compositionally graded ceramic–metal cylindrical shells under a periodic axial impulsive loading. Compos. Struct. 69, 57–247 (2005)

    Article  Google Scholar 

  36. Kieback B., Neubrand A., Riedel H.: Processing techniques for functionally graded materials. Mater. Sci. Eng. A 362, 81–105 (2003)

    Article  Google Scholar 

  37. Loy C.T., Lam K.Y., Reddy J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41, 309–324 (1999)

    Article  MATH  Google Scholar 

  38. Naeem, M.N.: Vibrational frequency analysis of non-rotating and rotating FGM circular cylindrical shell. Ph.D. thesis submitted to the UMIST, Manchester (2002)

  39. Patel B.P., Gupta S.S., Loknath M.S., Kadu C.P.: Free vibration analysis of functionally graded elliptical cylindrical shells using higher order theory. Compos. Struct. 69, 259–270 (2005)

    Article  Google Scholar 

  40. Zhi C., Hua W.: Free vibration of FGM cylindrical shells with holes under various boundary conditions. J. Sound Vib. 306, 227–237 (2007)

    Article  Google Scholar 

  41. Iqbal Z., Naeem M.N., Sultana N.: Vibration characteristics of FGM circular cylindrical shells using wave propagation approach. Acta Mech. 208, 237–248 (2009)

    Article  MATH  Google Scholar 

  42. Shen H.: Nonlinear vibration of shear deformable FGM cylindrical shells surrounded by an elastic medium. Compos. Struct. 94, 1144–1154 (2012)

    Article  Google Scholar 

  43. Bich D.H., Nguyen N.X.: Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations. J. Sound Vib. 331, 5488–5501 (2012)

    Article  Google Scholar 

  44. Strozzi M., Pellicano F.: Nonlinear vibrations of functionally graded cylindrical shells. Thin Wall Struct. 67, 63–77 (2013)

    Article  Google Scholar 

  45. Loy C.T., Lam K.Y.: Vibration of cylindrical shells with ring support. Int. J. Mech. Sci. 39, 445–471 (1997)

    Article  Google Scholar 

  46. Zhang L., Xiang Y.: Vibration of open circular cylindrical shells with intermediate ring supports. Int. J. Solid. Struct. 43, 3705–3722 (2006)

    Article  MATH  Google Scholar 

  47. Touloukian Y.S.: Thermophysical properties of high temperature solid materials. Macmillan, New York (1967)

    Google Scholar 

  48. Reddy J.N.: Mechanics of laminated composite plates and shells: Theory and analysis, 2nd ed. CRC Press, Boca Raton (2004)

    Google Scholar 

  49. Moon F.C., Shaw S.W.: Chaotic vibrations of a beam with non-linear boundary conditions. Int. J. Non-Linear Mech. 18, 465–477 (1983)

    Article  MathSciNet  Google Scholar 

  50. Ritz W.: Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern. Annalen der Physik. 333, 737–786 (1909)

    Article  Google Scholar 

  51. Loy C.T., Lam K.Y., Shu C.: Analysis of cylindrical shells using generalized differential quadrature. Shock Vib. 4, 8–193 (1997)

    Google Scholar 

  52. Zhang X.M., Liu G.R., Lam K.Y.: Vibration analysis of thin cylindrical shells using wave propagation approach. J. Sound Vib. 239, 397–403 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Raja Hamzah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isvandzibaei, M.R., Jamaluddin, H. & Raja Hamzah, R.I. Effects of uniform interior pressure distribution on vibration of FGM cylindrical shell with rings support based on first-order theory subjected to ten boundary conditions. Acta Mech 225, 2085–2109 (2014). https://doi.org/10.1007/s00707-013-1079-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1079-8

Keywords

Navigation