Acta Mechanica

, Volume 225, Issue 4–5, pp 1061–1073 | Cite as

Morphology and performance of graphene layers on as-grown and transferred substrates

  • Mario Lanza
  • Yan Wang
  • Hui Sun
  • Yuzhen Tong
  • Huiling DuanEmail author


Graphene’s excellent physical, electrical, mechanical and passivating properties are revolutionizing the world of nanotechnology. In its beginning, graphene was only used as the conductive channel in metal-oxide-semiconductor field-effect transistors and as metallic electrode in capacitors, but the development of chemical vapor deposited graphene on metal catalysts, together with an ingenious process to transfer it to arbitrary substrates extended the use of graphene to many other applications. The main problem of this methodology is to get a good adhesion between the graphene and the target substrate that ensures both protection and interaction. In this paper, we analyze the capability of graphene to adapt to underlying simple and complex substrates. We observe the important adhesion differences depending on the graphene thickness and the target substrate roughness. We take advantage of graphene coatings to protect different materials from high current densities, mechanical frictions and oxidation. The findings and prototypes here designed may open the way to extend the use of graphene as protective coating.


Atomic Force Microscopy PMMA Graphene Sheet Graphene Layer Auger Electron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  2. 2.
    Gyan P., Michael A.C., Michael L.B., Ronald G.R.: AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H–SiC. Carbon 48, 2383–2393 (2011)Google Scholar
  3. 3.
    Alaboson J.M.P., Wang Q.H., Kellar J.A., Park J., Elam J.W., Pellin M.J., Hersam M.C.: Conductive atomic force microscope nanopatterning of epitaxial graphene on SiC(0001) in ambient conditions. Adv. Mater. 23, 2181–2184 (2011)CrossRefGoogle Scholar
  4. 4.
    Huang Q.S., Wang G., Guo L.W., Jia Y.P., Lin J.J., Li K., Wang W.J., Chen X.L.: Stable field electron emission of vertically standing graphene films. Small 7, 450–454 (2011)CrossRefGoogle Scholar
  5. 5.
    Yue Y.N., Zhang J.C., Wang X.W.: Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 23, 3324–3333 (2011)CrossRefGoogle Scholar
  6. 6.
    Vecchio C., Sonde S., Bongiorno C., Rambach M., Yakimova R., Raineri V.: Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC(0001). Nanoscale Res. Lett. 9, 6–26 (2011)Google Scholar
  7. 7.
    Chae S.J., Günes F., Kim K.K., Han G.H., Kim S.M., Shin H.J., Yoon S.M., Choi J.Y., Park M.H., Yang C.W., Pribat D., Lee Y.H.: Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv. Mater. 21, 2328–2333 (2009)CrossRefGoogle Scholar
  8. 8.
    Li X.S., Cai W.W., An J.H., Kim S., Nah J., Yang D.X., Piner R.D.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRefGoogle Scholar
  9. 9.
    Suk J.W., Kitt A., Magnuson C.W., Hao Y., Ahmed S., An J., Swan A.K., Goldberg B.B., Ruoff R.S.: Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 5, 6916–6924 (2011)CrossRefGoogle Scholar
  10. 10.
    Yang W., He C.L., Zhang L.C., Wang Y., Shi Z.W., Cheng M., Xie G., Wang D., Yang R., Shi D., Zhang G.: Growth, characterization, and properties of nanographene. Small 8, 1429–1435 (2012)CrossRefGoogle Scholar
  11. 11.
    Stützel E.U., Burghard M., Kern K., Travesi F., Nichele F., Sordan R.: A graphene nanoribbon memory cell. Small 6, 2822–2825 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu W., Jackson B.L., Zhu J., Miao C.Q., Chung C.H., Park Y.J., Sun K., Woo J., Xie Y.H.: Large scale pattern graphene electrode for high performance in transparent organic single crystal field-effect transistors. ACS Nano 4, 3927–3932 (2010)CrossRefGoogle Scholar
  13. 13.
    Liao Z.M., Han B.H., Zhou Y.B., Yu D.P.: Hysteresis reversion in graphene field-effect transistors. J. Chem. Phys. 133, 044703 (2010)CrossRefGoogle Scholar
  14. 14.
    Zhang Y.F., Gao T., Gao Y.B., Xie S.B., Ji Q.Q., Yan K., Peng H.: Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 5, 4014–4022 (2011)CrossRefGoogle Scholar
  15. 15.
    Lanza M., Wang Y., Gao T., Bayerl A., Porti M., Nafria M., Zhou Y., Jin G., Liu Z., Zhang Y.F., Yu D.P., Duan H.L.: Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res. 6, 485–495 (2013)CrossRefGoogle Scholar
  16. 16.
    Ahmad M., Han S.A., Tien D.H., Jung J., Seo Y.: Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 110, 054307 (2011)CrossRefGoogle Scholar
  17. 17.
    Kwon S., Chung H.J., Seo S., Park J.Y.: Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 44, 768–771 (2012)CrossRefGoogle Scholar
  18. 18.
    Orofeo C.M., Hibino H., Kawahara K., Ogawa Y., Tsuji M., Ikeda K.I., Mizuno S., Ago H.: Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50, 2189–2196 (2012)CrossRefGoogle Scholar
  19. 19.
    Ismach A., Druzgalski C., Penwell S., Schwartzberg A., Zheng M., Javey A., Bokor J., Zhang Y.G.: Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010)CrossRefGoogle Scholar
  20. 20.
    Robertson A.W., Warner J.H.: Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 11, 1182–1189 (2011)CrossRefGoogle Scholar
  21. 21.
    Ando Y.: Lowering friction coefficient under low loads by minimizing effects of adhesion force and viscous resistance. Wear 254, 965–973 (2003)CrossRefGoogle Scholar
  22. 22.
    Shin Y.J., Stromberg R., Nay R., Huang H., Wee A.T.S., Yang H., Bhatia C.S.: Frictional characteristics of exfoliated and epitaxial Graphene. Carbon 49, 4059–4073 (2011)CrossRefGoogle Scholar
  23. 23.
    Tanaka K., Fujii Y., Atarashi H., Akabori K., Hino M., Nagamura T.: Nonsolvents cause swelling at the interface with Poly(methyl methacrylate) films. Langmuir 24, 296–301 (2008)CrossRefGoogle Scholar
  24. 24.
    Park J.K., Song S.M., Mun J.H., Cho B.J.: Graphene gate electrode for MOS structure-based electronic devices. Nano Lett. 11, 5383–5386 (2011)CrossRefGoogle Scholar
  25. 25.
    Liu N., Pan Z.H., Fu L., Zhang C., Dai B., Liu Z.F.: The origin of wrinkles on transferred graphene. Nano Res. 4, 996–1004 (2011)CrossRefGoogle Scholar
  26. 26.
    Duan W.H., Gong K., Wang Q.: Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear. Carbon 49, 3107–3112 (2011)CrossRefGoogle Scholar
  27. 27.
    Mei H., Huang R.: Buckling modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90, 151902 (2007)CrossRefGoogle Scholar
  28. 28.
    Li T., Zhang Z.: Substrate-regulated morphology of grapheme. J. Phys. D: Appl. Phys. 43, 075303 (2010)CrossRefGoogle Scholar
  29. 29.
    Song S.M., Cho B.J.: Investigation of interaction between graphene and dielectrics. Nanotechnology 21, 335706 (2010)CrossRefGoogle Scholar
  30. 30.
    Lauffer P., Emtsev K.V., Graupner R., Seyller T.H., Ley L.: Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 77, 155426 (2008)CrossRefGoogle Scholar
  31. 31.
    Brar V.W., Zhang Y., Yayon Y., Ohta T., McChesney J.L., Bostwick A., Rotenberg E., Horn K., Crommie M.F.: Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC. Appl. Phys. Lett. 91, 122102 (2007)CrossRefGoogle Scholar
  32. 32.
    Lanza M., Bayerl A., Gao T., Porti M., Nafria M., Jing G., Zhang Y., Liu Z., Duan H.: Graphene-coated Atomic Force Microscope tips for reliable nanoscale electrical characterization. Adv. Mater. 25, 1440–1444 (2013)CrossRefGoogle Scholar
  33. 33.
    Lanza M., Porti M., Nafria M., Aymerich X., Wittaker E., Hamilton B.: Electrical resolution during Conductive AFM measurements under different environmental conditions and contact forces. Rev. Sci. Instrum. 81, 106110 (2010)CrossRefGoogle Scholar
  34. 34.
    Lanza M., Porti M., Nafria M., Aymerich X., Wittaker E., Hamilton B.: UHV CAFM characterization of high-k dielectrics: effect of the technique resolution on the pre- and post-breakdown electrical measurements. Microelectron. Reliab. 50, 1312–1315 (2010)CrossRefGoogle Scholar
  35. 35.
    Lanza M., Iglesias V., Porti M., Nafria M., Aymerich X.: Polycrystallization effects on the variability of the electrical properties of high-k dielectrics at the nanoscale. Nanoscale Res. Lett. 6, 108 (2011)CrossRefGoogle Scholar
  36. 36.
    Frammelsberger W., Benstetter G., Kiely J., Stamp R.: CAFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. Appl. Surf. Sci. 253, 3615–3626 (2007)CrossRefGoogle Scholar
  37. 37.
    Lanza M., Porti M., Nafría M., Benstetter G., Frammelsberger W., Ranzinger H., Lodermeier E., Jaschke G.: Influence of the manufacturing process on the Electrical properties of thin (< 4nm) Hafnium based high-k stacks observed with CAFM. Microelectron. Reliab. 47, 1424–1428 (2007)CrossRefGoogle Scholar
  38. 38.
    Lanza M., Porti M., Nafría M., Aymerich X., Benstetter G., Lodermeier E., Ranzinger H., Jaschke G., Teichert S., Wilde L., Michalowski P.: Conductivity and charge trapping after electrical stress in amorphous and polycrystalline Al2O3 based devices studied with AFM related techniques. IEEE Trans. Nanotechnol. 10, 344–351 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Mario Lanza
    • 1
  • Yan Wang
    • 2
  • Hui Sun
    • 1
  • Yuzhen Tong
    • 3
  • Huiling Duan
    • 1
    • 4
    Email author
  1. 1.State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Aerospace Engineering, CAPT, College of EngineeringPeking UniversityBeijingChina
  2. 2.Beijing Aeronautical Science and Technology Research InstituteBeijingChina
  3. 3.School of Physics, State Key Laboratory of Artificial Microstructure and Mesoscopic PhysicsPeking UniversityBeijingChina
  4. 4.Key Laboratory of High Energy Density Physics Simulation (HEDPS)Peking UniversityBeijingChina

Personalised recommendations