Skip to main content
Log in

Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A theoretical model is established to investigate the interaction between the cooperative grain boundary (GB) sliding and migration and a semi-elliptical blunt crack in deformed nanocrystalline materials. By using the complex variable method, the effect of two disclination dipoles produced by the cooperative GB sliding and migration process on the emission of lattice dislocations from a semi-elliptical blunt crack tip is explored. Closed-form solutions for the stress field and the force acting on the dislocation are obtained in complex form, and the critical stress intensity factors for the first dislocation emission from a blunt crack under mode I and mode II loadings are calculated. Then, the influence of disclination strength, curvature radius of blunt crack tip, crack length, locations and geometry of disclination dipoles, and grain size on the critical stress intensity factors is presented detailedly. It is shown that the cooperative GB sliding and migration and the grain size have significant influence on the dislocation emission from a blunt crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meyers M.A., Mishra A., Benson D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006)

    Article  Google Scholar 

  2. Dao M., Lu L., Asaro R.J., De Hosson J.T.M., Ma E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041–4065 (2007)

    Article  Google Scholar 

  3. Zhu L.L., Zheng X.J.: Influence of interface energy and grain boundary on the elastic modulus of nanocrystalline materials. Acta Mech. 213, 223–234 (2010)

    Article  MATH  Google Scholar 

  4. Alizada A.N., Sofiyev A.H., Kuruoglu N.: Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load. Acta Mech. 223, 1371–1383 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wu M.S., Zhou K., Nazarov A.A.: Crack nucleation at disclinated triple junctions. Phys. Rev. B. 76, 134105-1–134105-6 (2007)

    Google Scholar 

  6. Zhou K., Wu M.S., Nazarov A.A.: Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828–5836 (2008)

    Article  Google Scholar 

  7. Voyiadjis G.Z., Deliktas B.: Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity. Acta Mech. 213, 3–26 (2010)

    Article  MATH  Google Scholar 

  8. Khan A.S., Farrok B., Takacs L.: Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater. Sci. Eng. A 489, 77–84 (2008)

    Article  Google Scholar 

  9. Farrok B., Khan A.S.: Grain size, strain rate, and temperature dependence of flow stress in ultra-fine grained and nanocrystalline Cu and Al: synthesis, experiment, and constitutive modeling. Int. J. Plast. 25, 715–732 (2009)

    Article  Google Scholar 

  10. Zhou K., Nazarov A.A., Wu M.S.: Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire. Phys. Rev. B 73, 045410-1–045410-11 (2006)

    Google Scholar 

  11. Barai P., Weng G.J.: Mechanics of very fine-grained nanocrystalline materials with contribution from grain interior, GB zone, and grain boundary sliding. Int. J. Plast. 25, 2410–2434 (2009)

    Article  Google Scholar 

  12. Bobylev S.V., Mukherjee A.K., Ovid’ko I.A.: Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics. Scr. Mater. 60, 36–39 (2009)

    Article  Google Scholar 

  13. Xia S.H., Wang J.T.: A micromechanical model of toughening behavior in the dual-phase composite. Int. J. Plast. 26, 1442–1460 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Barai P., Weng G.J.: Mechanics of a nanocrystalline coating and grain-size dependence of its plastic strength. Mech. Mater. 43, 496–504 (2011)

    Article  Google Scholar 

  15. Liu Y.G., Zhou J.Q., Shen T.D., Hui D.: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26, 1734–1741 (2011)

    Article  Google Scholar 

  16. Rupert T.J., Trelewicz J.R., Schuh C.A.: Grain boundary relaxation strengthening of nanocrystalline Ni–W alloys. J. Mater. Res. 27, 1285 (2012)

    Article  Google Scholar 

  17. Liu Y.G., Zhou J.Q., Shen T.D.: A combined dislocation–cohesive zone model for fracture in nanocrystalline materials. J. Mater. Res. 27, 694–700 (2012)

    Article  Google Scholar 

  18. Ovid’ko I.A.: Deformation and diffusion modes in nanocrystalline materials. Int. Mater. Rev. 50, 65–82 (2005)

    Article  Google Scholar 

  19. Koch C.C.: Structural nanocrystalline materials: an overview. J. Mater. Sci. 42, 1403–141 (2007)

    Google Scholar 

  20. Ovid’ko I.A., Sheinerman A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007)

    Article  Google Scholar 

  21. Ovid’ko I.A., Sheinerman A.G.: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57, 2217–2228 (2009)

    Article  Google Scholar 

  22. Sergueeva A.V., Mara N.A., Krasilnikov N.A., Valiev R.Z., Mukherjee A.K.: Cooperative grain boundary sliding in nanocrystalline materials. Philos. Mag. 86, 5797–5804 (2006)

    Article  Google Scholar 

  23. Ovid’ko I.A., Sheinerman A.G., Aifantis E.C.: Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater. 56, 2718–1727 (2008)

    Google Scholar 

  24. Zhou K., Nazarov A.A., Wu M.S.: Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects. Phys. Rev. Lett. 98, 035501-1–1035504-4 (2007)

    Google Scholar 

  25. Zhou K., Hoh H.J., Wang X., Keer L.M., Pang H.J.L., Song B., Wang Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  26. Youssef K.M., Scattergood R.O., Murty K.L., Koch C.C.: Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251–256 (2006)

    Article  Google Scholar 

  27. Sergueeva A.V., Mara N.A., Mukherjee A.K.: Grain boundary sliding in nanomaterials at elevated temperatures. J. Mater. Sci. 4, 1433–1438 (2007)

    Article  Google Scholar 

  28. Bhaduri S., Bhaduri S.B.: Enhanced low temperature toughness of Al 2 O 3ZnO 2 nano/nano composites. Nanostruct. Mater. 8, 755–763 (1997)

    Article  Google Scholar 

  29. Mirshams R.A., Xiao C.H., Whang S.H., Yin W.M.: R-Curve characterization of the fracture toughness of nanocrystalline nickel thin sheets. Mater. Sci. Eng. A 315, 21–27 (2001)

    Article  Google Scholar 

  30. Zhao Y., Qian J., Daemen L.L., Pantea C., Zhang J., Voroninm G.A. et al.: Enhancement of fracture toughness in nanostructured diamond-SiC composites. Appl. Phys. Lett. 84, 1356–1358 (2004)

    Article  Google Scholar 

  31. Kaminskii A.A., Akchurin M.S., Gainutdinov R.V. et al.: Microhardness and fracture toughness of Y 2 O 3- and Y 3 Al 5 O 12- based nanocrystalline laser ceramics. Crystallogr. Rep. 50, 569–573 (2005)

    Article  Google Scholar 

  32. Gutkin M.Yu, Ovid’ko I.A.: Grain boundary migration and rotational deformation mode in nanocrystalline materials. Appl. Phys. Lett. 87, 251916 (2005)

    Article  Google Scholar 

  33. Bobylev S.V, Morozov N.F., Ovid’ko I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010)

    Article  Google Scholar 

  34. Ovid’ko I.A., Sheinerman A.G., Aifantis E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59, 5023–5031 (2011)

    Article  Google Scholar 

  35. Fang Q.H., Feng H., Liu Y.W., Lin S., Zhang N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 11, 1406–1412 (2012)

    Article  Google Scholar 

  36. Huang M.X., Li Z.H.: Dislocation emission criterion from a blunt crack tip. J. Mech. Phys. Solids 52, 1991–2003 (2004)

    Article  MATH  Google Scholar 

  37. Fischer L.L., Beltz G.E.: The effect of crack blunting on the competition between dislocation nucleation and cleavage. J. Mech. Phys. Solids 49, 635–654 (2001)

    Article  MATH  Google Scholar 

  38. Huang M.X., Rivera Dı’az del Castillo P.E.J., Li Z.H.: Edge dislocation dipole emission from a blunt crack tip and its morphological effects. Scr. Mater. 54, 649–653 (2006)

    Article  Google Scholar 

  39. Luo J., Xiao Z.M.: Analysis of a screw dislocation interacting with an elliptical nano inhomogeneity. Int. J. Eng. Sci. 47, 883–893 (2009)

    Article  MathSciNet  Google Scholar 

  40. Chen B.J., Xiao Z.M., Liew K.M.: Electro-elastic stress analysis for a wedge-shaped crack interacting with a screw dislocation in piezoelectric solid. Int. J. Eng. Sci. 40, 621–635 (2002)

    Article  Google Scholar 

  41. Muskhelishvili N.L.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)

    MATH  Google Scholar 

  42. Zhang T.Y., Li J.C.M.: Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys. 72, 2215–2226 (1992)

    Article  Google Scholar 

  43. Xiao Z.M., Chen B.J.: A screw dislocation interacting with a coated fiber. Mech. Mater. 32, 485–494 (2000)

    Article  Google Scholar 

  44. Xiao Z.M., Bai J.: On piezoelectric inhomogeneity related problem-part I: a close-form solution for the stress field outside a circular piezoelectric inhomogeneity. Int. J. Eng. Sci. 37, 945–959 (1999)

    Article  Google Scholar 

  45. Zhou K.M.S., Wu M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211, 271–292 (2010)

    Article  MATH  Google Scholar 

  46. Zhou K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223, 293–308 (2012)

    Article  MATH  Google Scholar 

  47. Fang Q.H., Liu Y.W., Jiang C.P., Li B.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73, 1235–1248 (2006)

    Article  Google Scholar 

  48. Liu Y.W., Fang Q.H.: Interaction of a wedge disclination dipole with circular inclusion. Phys. Status Solidi (A) 203, 443–458 (2006)

    Article  Google Scholar 

  49. Song H.P., Fang Q.H., Liu Y.W.: Elastic behavior of a wedge disclination dipole near a sharp crack emanating from a semi-elliptical blunt crack. Chin. Phys. B 19, 056101 (2010)

    Article  Google Scholar 

  50. Hirth J.P., Lothe J.: Theory of Dislocations, 2nd edn. Wiley, New York (1964)

    Google Scholar 

  51. Fang Q.H., Song H.P., Liu Y.W.: Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack. Chin. Phy. B 19, 016102 (2010)

    Article  Google Scholar 

  52. Creager M., Paris P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. 3, 247–252 (1967)

    Article  Google Scholar 

  53. Rice J.R., Thomson R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29, 73–80 (1974)

    Article  Google Scholar 

  54. Feng H., Fang Q.H., Zhang L.C, Liu Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61, 39–48 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihong Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Fang, Q., Feng, H. et al. Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech 225, 2005–2019 (2014). https://doi.org/10.1007/s00707-013-1039-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1039-3

Keywords

Navigation