Skip to main content
Log in

On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A theory describing the behavior of chemically non-reacting binary mixtures can be based on a detailed formulation of the governing equations for the individual components of the mixture or on treating the mixture as a single homogenized continuous medium. We argue that if we accept that both approaches can be used to describe the behavior of the given mixture, then the requirement on the equivalence of these approaches places restrictions on the possible structure of the internal energy, entropy, Helmholtz potential, and also of the diffusive, energy, and entropy fluxes. (The equivalence of the approaches is understood in the sense that the quantities used in one approach can be interpreted in terms of the quantities used in the other approach and vice versa. Further, both approaches must lead to the same predictions concerning the evolution of the physical system under consideration). In the case of a general chemically non-reacting binary mixture of components at the same temperature, we show that these restrictions can indeed be obtained by purely algebraic manipulations. An important outcome of this analysis is, for example, a general form of the evolution equation for the diffusive flux. The restrictions can be further exploited in the specification of thermodynamically consistent constitutive relations for quantities such as the interaction (drag) force or the Cauchy stress tensor. As an example of the application of the current framework, we derive, among others, a generalization of Fick’s law and we recover several non-trivial results obtained by other techniques. The qualitative features of the derived generalization of Fick’s law are demonstrated by a numerical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowen R.M.: Continuum Physics, vol. 3, Chap. Theory of Mixtures, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  2. Cussler E.L.: Diffusion: Mass Transfer in Fluid Systems. Cambridge Series in Chemical Engineering, 3rd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Depireux N., Lebon G.: An extended thermodynamics modeling of non-Fickian diffusion. J. Non-Newton. Fluid Mech. 96(1-2), 105–117 (2001). doi:10.1016/S0377-0257(00)00134-8

    Article  MATH  Google Scholar 

  4. de Groot S.R., Mazur P.: Non-equilibrium thermodynamics. Series in Physics. North-Holland, Amsterdam (1962)

    Google Scholar 

  5. Elafif A., Grmela M.: Non-Fickian mass transport in polymers. J. Rheol. 46(3), 591–628 (2002). doi:10.1122/1.1470520

    Article  Google Scholar 

  6. Elafif A., Grmela M., Lebon G.: Rheology and diffusion in simple and complex fluids. J. Non-Newtonian Fluid Mech. 86(1–2), 253–275 (1999). doi:10.1016/S0377-0257(98)00211-0

    Article  MATH  Google Scholar 

  7. Fick A.: On liquid diffusion. Philos. Mag. 10(63), 30–39 (1855). doi:10.1080/14786445508641925

    Google Scholar 

  8. Grmela M., Elafif A.G.L.: Isothermal nonstandard diffusion in a two-component fluid mixture: a Hamiltonian approach. J. Non-Equilib. Thermodyn. 23, 312–327 (1988). doi:10.1515/jnet.1998.23.4.376

    Google Scholar 

  9. Grmela M., Öttinger H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997). doi:10.1103/PhysRevE.56.6620

    Article  MathSciNet  Google Scholar 

  10. Hutter K., Jöhnk K.: Continuum methods of physical modeling: continuum mechanics, dimensional analysis, turbulence. Springer, Berlin (2004)

    Book  Google Scholar 

  11. Joy D., Casas-Vázquez J., Lebon F.: Extended irreversible thermodynamics, 4th edn. Springer, New York (2010). doi:10.1007/978-90-481-3074-0

    Book  Google Scholar 

  12. Liu I.S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rational Mech. Anal. 46, 131–148 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Liu Q., Kee D.De: Modeling of diffusion through polymeric membranes. Rheol. Acta 44(3), 287–294 (2005). doi:10.1007/s00397-004-0410-7

    Article  Google Scholar 

  14. Massoudi, M.: Boundary conditions in mixture theory and in CFD applications of higher order models. Recent advances in non-linear mechanics. Comput. Math. Appl. 53(2), 156–167 (2007). doi:10.1016/j.camwa.2006.02.016

  15. Mauri R.: Non-Equilibrium Thermodynamics in Multiphase Flows. Soft and Biological Matter, 4th edn. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Maxwell J.C.: Illustrations of the dynamical theory of gases. Philos. Mag. 19, 19–32 (1860)

    Google Scholar 

  17. Maxwell J.C.: Illustrations of the dynamical theory of gases. Philos. Mag. 20, 21–37 (1860)

    Google Scholar 

  18. Müller I.: Thermodynamics. Interaction of Mechanics and Mathematics. Pitman Publishing Limited, London (1985)

    Google Scholar 

  19. Müller I.: Thermodynamics of mixtures and phase field theory. Int. J. Solids Struct. 38(6–7), 1105–1113 (2001). doi:10.1016/S0020-7683(00)00076-7

    Article  MATH  Google Scholar 

  20. Prasad S.C., Rajagopal K.R.: On the diffusion of fluids through solids undergoing large deformations. Math. Mech. Solids 11(3), 291–305 (2006). doi:10.1177/1081286504046484

    Article  MathSciNet  MATH  Google Scholar 

  21. Rajagopal, K.R., Tao, L.: Mechanics of mixtures. Series on Advances in Mathematics for Applied Sciences, vol. 35. World Scientific. River Edge, NJ (1995)

  22. Rajagopal K.R., Srinivasa A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2042), 631–651 (2004). doi:10.1098/rspa.2002.1111

    Article  MathSciNet  MATH  Google Scholar 

  23. Rajagopal K.R., Wineman A.S., Gandhi M.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24(8), 1453–1463 (1986). doi:10.1016/0020-7225(86)90074-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Ricard Y., Bercovici D., Schubert G.: A two-phase model for compaction and damage: 1. General theory. J. Geophys. Res. 106(B5), 8907–8924 (2001). doi:10.1029/2000JB900430

    Article  Google Scholar 

  25. Samohýl I.: Thermodynamics of irreversible processes in fluid mixtures, Teubner-Texte zur Physik [Teubner Texts in Physics], vol. 12. Teubner, Leipzig (1987)

    Google Scholar 

  26. Shi J.J.J., Rajagopal K.R., Wineman A.S.: Applications of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media. Int. J. Eng. Sci. 19(6), 871–889 (1981)

    Article  MATH  Google Scholar 

  27. Truesdell, C.: Rational thermodynamics, 2nd edn. Springer, New York (1984). doi:10.1007/978-1-4612-5206-1. With an appendix by C. C. Wang, and additional appendices by 23 contributors.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Souček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souček, O., Průša, V., Málek, J. et al. On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Acta Mech 225, 3157–3186 (2014). https://doi.org/10.1007/s00707-013-1038-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1038-4

Keywords

Navigation