Skip to main content
Log in

Interfacial fracture analysis of a piezoelectric–polythene composite cylindrical shell patch under axial shear

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work studies the interfacial fracture in a piezoelectric cylindrical shell patch. The problem is solved by the methods of infinite trigonometric series and Cauchy singular integral equation, and the numerical results of the stress intensity factor (SIF) are obtained. The effects of the interfacial radius and crack’s location on the SIF are explained through the effects of the free surface, interfacial curvature, crack length, and interface end, respectively. An optimal stiffness matching relationship between the piezoelectric layer and dielectric substrate is suggested. The effects of the piezoelectric and dielectric coefficients are explained through the mechanism of piezoelectric stiffening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barzoki M.A.A., Arani A.G., Kolahchi R. et al.: Electro-thermo-mechanical torsional buckling of a piezoelectric polymeric cylindrical shell reinforced by DWBNNTs with an elastic core. Appl. Math. Mod. 36, 2983–2995 (2012)

    Article  MATH  Google Scholar 

  2. Cao Y., Sun H.L., An F.Y. et al.: Active control of low-frequency sound radiation by cylindrical shell with piezoelectric stack force actuators. J. Sound Vib. 331, 2471–2484 (2012)

    Article  Google Scholar 

  3. Pan Y.Z., Mo X.P., Chai Y.: A new design on broadband flextensional transducer. Appl. Acoust. 72, 836–840 (2011)

    Article  Google Scholar 

  4. Nanda N., Nath Y.: Active control of delaminated composite shells with piezoelectric sensor/actuator patches. Struct. Eng. Mech. 42, 211–228 (2012)

    Article  Google Scholar 

  5. Alibeigloo A., Kani A.M., Pashaei M.H.: Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers. Int. J. Press. Vess. Pip. 89, 98–111 (2012)

    Article  Google Scholar 

  6. Bodaghi M., Shakeri M.: An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads. Compos. Struct. 94, 1721–1735 (2012)

    Article  Google Scholar 

  7. Ying Z.G., Feng J., Ni Y.Q. et al.: Electric potential response analysis of a piezoelectric shell under random micro-vibration excitations. Smart. Mater. Struct. 20, 105029 (2011)

    Article  Google Scholar 

  8. Chen W.Q., Bian Z.G.: Wave propagation in submerged functionally graded piezoelectric cylindrical transducers with axial polarization. Mech. Adv. Mater. Struct. 18, 85–93 (2011)

    Google Scholar 

  9. Sun W.H., Ju G.L., Pan J.W., Li Y.D.: Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite. Ultrasonics 51, 831–838 (2011)

    Article  Google Scholar 

  10. Li Y.D., Lee K.Y.: Effect of an imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor. Ultrasonics 50, 473–478 (2010a)

    Article  MathSciNet  Google Scholar 

  11. Dong K., Wang X.: Wave propagation in laminated piezoelectric cylindrical shells in hydrothermal environment. Struct. Eng. Mech. 24, 395–410 (2006)

    Article  Google Scholar 

  12. Li Y.D., Lee K.Y.: Fracture analysis on the arc-shaped interface in a layered cylindrical piezoelectric sensor polarized along its axis. Eng. Fract. Mech. 76, 2065–2073 (2009)

    Article  Google Scholar 

  13. Li Y.D., Lee K.Y.: Magnetostrictive fracture of a cylindrical multiferroic composite. Int. J. Eng. Sci. 48, 199–208 (2010b)

    Article  Google Scholar 

  14. Kim D., Kim J.O., Jung S.I.: Vibration characteristics of a piezoelectric open-shell transducer. J. Sound Vibr. 331, 2038–2054 (2012)

    Article  Google Scholar 

  15. Alibeigloo A., Chen W.Q.: Elasticity solution for an FGM cylindrical panel integrated with piezoelectric layers. Eur. J. Mech. A/Sol. 29, 714–723 (2010)

    Article  Google Scholar 

  16. Li Y.D., Lee K.Y., Feng F.X.: Interface edge crack in a multiferroic semicylinder. Meccanica 46, 1393–1399 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feng F.X., Li Y.D., Lee K.Y.: Multiple cracks on the arc-shaped interface in a semi-cylindrical magneto-electro-elastic composite with an orthotropic substrate. Eng. Fract. Mech. 78, 2029–2041 (2011)

    Article  Google Scholar 

  18. Theocaris P.S., Ioakimids N.I.: Numerical integration methods for the solution of singular integral equations. Quart. Appl. Math. 35, 173–183 (1977)

    MATH  MathSciNet  Google Scholar 

  19. Li Y.D., Lee K.Y.: Effects of magneto-electric loadings and piezomagnetic/piezoelectric stiffening on multiferroic interface fracture. Eng. Fract. Mech. 77, 856–866 (2010c)

    Article  Google Scholar 

  20. Qian Z., Jin F., Kishimoto K., Wang Z.: Effect of initial stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structures. Sens. Act. A: Phys. 112, 368–375 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Dong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YD., Xiong, T. & Zhao, H. Interfacial fracture analysis of a piezoelectric–polythene composite cylindrical shell patch under axial shear. Acta Mech 225, 543–551 (2014). https://doi.org/10.1007/s00707-013-0982-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0982-3

Keywords

Navigation