Skip to main content
Log in

Total Lagrangian particle method for the large-deformation analyses of solids and curved shells

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A high-accuracy smoothed-particle hydrodynamics (SPH) method for a large-deformation solid is developed from two aspects: improving the completeness of the approximation function and deducing the governing equation in the undeformed configuration. On the basis of Combescure’s researches and our previous studies, the SPH shell theory based on the Mindlin–Ressiner plate is detailed, which has overcome the unbridgeable drawbacks of solid modeling of thin structures and pushed forward the engineering applications of solving large-deformation and other nonlinear issues. Afterward, several treatments of SPH solid and shell are carried out, including the hourglass mode, boundary conditions and irregular structures; moreover, the corresponding validations are also conducted to reveal the feasibility and effectiveness of the proposed treatments. Finally, the accuracy of the present SPH program is verified further through two benchmarks of a curved shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad S., Irons B.M., Zienkiewicz O.C.: Analysis of thick and thin shell structures by curved finite elements. Int. J. Numer. Methods Eng. 2, 419–451 (1970)

    Article  Google Scholar 

  2. Hughes T.J.R., Liu W.K.: Nonlinear finite element analysis of shells: part I. Three-dimensional shells. Comput. Methods Appl. Mech. Eng. 26, 331–362 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Stolarski H., Belytschko T.: Shear and membrane locking in curved C 0 elements. Comput. Methods Appl. Mech. Eng. 41, 279–296 (1983)

    Article  MATH  Google Scholar 

  4. Kanok-Nukulchai W., Bary W., Saran-Yasoontorn K., Bouillard P.H.: On elimination of shear locking in the element-free Galerkin method. Int. J. Numer. Methods Eng. 52, 705–725 (2001)

    Article  MATH  Google Scholar 

  5. Reddy J.N.: Theory and Analysis of Elastic Plates, 2nd edn. CRC press, Boca Raton (2007)

    Google Scholar 

  6. Liu W.K., Guo Y., Tang S., Belytschko T.: A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput. Methods Appl. Mech. Eng. 154, 69–132 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  8. Krysl P., Belytschko T.: Analysis of thin shells by the element-free Galerkin method. Int. J. Solids Struct. 33, 3057–3080 (1996)

    Article  MATH  Google Scholar 

  9. Noguchi H., Kawashima T., Miyamura T.: Element free analyses of shell and spatial structures. Int. J. Numer. Methods Eng. 47, 1215–1240 (2000)

    Article  MATH  Google Scholar 

  10. Rabczuk T., Areias P.M.A., Belytschko T.: A meshfree thin shell method for non-linear dynamic fracture. Int. J. Numer. Methods Eng. 72, 524–548 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang D., Chen J.S.: Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation. Comput. Methods Appl. Mech. Eng. 193, 1065–1083 (2003)

    Article  Google Scholar 

  12. Li S., Hao W., Liu W.K.: Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput. Mech. 25, 102–116 (2000)

    Article  MATH  Google Scholar 

  13. Garcia O., Fancello E.A., de Barcellos C.S., Duarte C.A.: hp-Clouds in Mindlin’s thick plate model. Int. J. Numer. Methods Eng. 47, 1381–1400 (2000)

    Article  MATH  Google Scholar 

  14. Sladek J., Sladek V., Wen P.H., Aliabadi M.H.: Meshless local Petrov-Galerkin (MPLG) method for shear deformable shell analysis. CMES Comput Model Eng Sci 13, 103–117 (2006)

    MATH  MathSciNet  Google Scholar 

  15. Oh H.S., Davis C., Jeong J.W.: Meshfree particle methods for thin plates. Comput. Methods Appl. Mech. Eng. 209(212), 156–171 (2012)

    Article  MathSciNet  Google Scholar 

  16. Maurel B., Combescure A.: An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Int. J. Numer. Methods Eng. 76, 949–971 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Caleyron F., Combescure A., Faucher V., Potapov S.: Dynamic simulation of damage-fracture transition in smoothed particles hydrodynamics shells. Int. J. Numer. Methods Eng. 90, 707–738 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ming F.R., Zhang A.M., Yao X.L.: Static and dynamic analysis of elastic shell structures with smoothed particle method. Acta Phys. Sin. 62, 110203 (2013)

    Google Scholar 

  19. Ming F.R., Zhang A.M., Cao X.Y.: A robust shell element in meshfree SPH method. Acta Mech. Sin. 29, 241–255 (2013)

    Article  MathSciNet  Google Scholar 

  20. Monaghan J.J.: An introduction to SPH. Comput. Phys. Commun. 48, 89–96 (1982)

    Article  Google Scholar 

  21. Randles P.W., Libersky L.D.: Normalized SPH with stress points. Int. J. Numer. Methods Eng. 48, 1445–1462 (2000)

    Article  MATH  Google Scholar 

  22. Dilts G.A.: Moving least squares particle hydrodynamics-I: consistency and stability. Int. J. Numer. Methods Eng. 44, 1115–1155 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dilts G.A.: Moving least squares particle hydrodynamics-II: conservation and boundaries. Int. J. Numer. Methods Eng. 48, 1503–1524 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, pp. 517–524 (1968)

  25. Bonet J., Lok T.S.L.: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180, 97–115 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu W.K., Li S., Belytschko T.: Moving least-square reproducing Kernel methods (I) methodology and convergence. Comput. Methods Appl. Mech. Eng. 143, 113–154 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu W.K., Jun S., Li S., Adee J., Belytschko T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Methods Eng. 38, 1655–1680 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  29. Morris J.P.: A study of the stability properties of SPH. Publ. Astron. Soc. Aust. 13, 97–102 (1996)

    Google Scholar 

  30. Johnson G.R., Stryk R.A., Beissel S.R.: SPH for high velocity impact computations. Comput. Methods Appl. Mech. Eng. 139, 347–373 (1996)

    Article  MATH  Google Scholar 

  31. Belytschko T., Krongauz Y., Dolbow J., Gerlach C.: On the completeness of meshfree particle methods. Int. J. Numer. Methods Eng. 43, 785–819 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Krongauz Y., Belytschko T.: Consistent pseudo-derivatives in meshless methods. Comput. Methods Appl. Mech. Eng. 146, 371–386 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Randles P.W., Libersky L.D.: Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139, 375–408 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vidal Y., Bonet J., Huerta A.: Stabilized updated Lagrangian corrected SPH for explicit dynamic problems. Int. J. Numer. Methods Eng. 69, 2687–2710 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Belytschko T., Rabczuk T., Xiao S.P.: Stable particle methods based on Lagrangian kernels. Comput. Methods Appl. Mech. 193, 1035–1063 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu G.R., Liu M.B.: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific, Singapore (2003)

    Book  Google Scholar 

  37. Betsch P., Menzel A., Stein E.: On the parameterization of finite rotations in computational mechanics. A classification of concepts with application to smooth shells. Comput. Methods Appl. Mech. 155, 273–305 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  38. Maurel B., Combescure A., Potapov S.: A robust SPH formulation for solids. Eur. J. Comput. Mech. 15, 495–512 (2006)

    MATH  Google Scholar 

  39. Dyka C.T., Randles P.W., Ingel R.P.: Stress points for tensile instability in SPH. Int. J. Numer. Methods Eng. 40, 2325–2341 (1997)

    Article  MATH  Google Scholar 

  40. Belytschko T., Guo Y., Liu W.K., Xiao S.P.: A unified stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 40, 1359–1400 (2000)

    Article  MathSciNet  Google Scholar 

  41. Macneal R.H., Harder R.L.: A proposed standard set of problems to test finite element accuracy. Finite Element Anal. Des. 1, 3–20 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A., Ming, F. & Cao, X. Total Lagrangian particle method for the large-deformation analyses of solids and curved shells. Acta Mech 225, 253–275 (2014). https://doi.org/10.1007/s00707-013-0938-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0938-7

Keywords

Navigation