Advertisement

Acta Mechanica

, Volume 224, Issue 11, pp 2623–2633 | Cite as

Influence of microstructure on thermoelastic wave propagation

  • Arkadi BerezovskiEmail author
  • Mihhail Berezovski
Article

Abstract

Numerical simulations of the thermoelastic response of a microstructured material on a thermal loading are performed in the one-dimensional setting to examine the influence of temperature gradient effects at the microstructure level predicted by the thermoelastic description of microstructured solids (Berezovski et al. in J. Therm. Stress. 34:413–430, 2011). The system of equations consisting of a hyperbolic equation of motion, a parabolic macroscopic heat conduction equation, and a hyperbolic evolution equation for the microtemperature is solved by a finite-volume numerical scheme. Effects of microtemperature gradients exhibit themselves on the macrolevel due to the coupling of equations of the macromotion and evolution equations for macro- and microtemperatures.

Keywords

Internal Variable Computational Cell Thermoelastic Wave Thermoelastic Response Induce Stress Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nowacki W.: Thermoelasticity. Pergamon Press, Oxford (1962)Google Scholar
  2. 2.
    Hetnarski R.B., Reza Eslami M.: Thermal Stresses: Advanced Theory and Applications. Springer, Berlin (2009)Google Scholar
  3. 3.
    Chandrasekharaiah D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)CrossRefGoogle Scholar
  4. 4.
    Hetnarski R.B., Ignaczak J.: Generalized thermoelasticity. J. Therm. Stress. 22, 451–476 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ignaczak J., Ostoja-Starzewski M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  6. 6.
    Mindlin R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Capriz G.: Continua with Microstructure. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Eringen A.C.: Microcontinuum Field Theories, vol. I. Springer, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 13, 117–131 (2009)CrossRefGoogle Scholar
  10. 10.
    Cardona J.-M., Forest S., Sievert R.: Towards a theory of second grade thermoelasticity. Extr. Math. 14, 127–140 (1999)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Forest S., Amestoy M.: Hypertemperature in thermoelastic solids. C. R. Mecanique 336, 347–353 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nguyen Q.-S.: On standard dissipative gradient models. Ann. Solid Struct. Mech. 1, 79–86 (2010)CrossRefGoogle Scholar
  13. 13.
    Tamma K.K., Zhou X.: Macroscale and microscale thermal transport and thermo-mechanical interactions: some noteworthy perspectives. J. Therm. Stress. 21, 405–449 (1998)CrossRefGoogle Scholar
  14. 14.
    Berezovski A., Engelbrecht J., Maugin G.A.: Thermoelasticity with dual internal variables. J. Therm. Stress. 34, 413–430 (2011)CrossRefGoogle Scholar
  15. 15.
    Berezovski, A., Engelbrecht, J.: Waves in microstructured solids: dispersion and thermal effects. In: Bai, Y., Wang, J., Fang, D. (eds.) Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, August 19–24, 2012, Beijing, China, CD-ROM, SM07-005 (2012)Google Scholar
  16. 16.
    Ván P., Berezovski A., Engelbrecht J.: Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235–254 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Maugin G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)CrossRefGoogle Scholar
  18. 18.
    Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Muschik W., Berezovski A.: Thermodynamic interaction between two discrete systems in non-equilibrium. J. Non-Equilib. Thermodyn. 29, 237–255 (2004)zbMATHGoogle Scholar
  20. 20.
    Berezovski A., Maugin G.A.: Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm. J. Comput. Phys. 168, 249–264 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Berezovski A., Maugin G.A.: Thermoelastic wave and front propagation. J. Therm. Stress. 25, 719–743 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Berezovski A., Engelbrecht J., Maugin G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Centre for Nonlinear StudiesInstitute of Cybernetics at Tallinn University of TechnologyTallinnEstonia
  2. 2.Department of Mathematical SciencesWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations