Skip to main content
Log in

On the dynamics of vortex structure in ferroelectric nanoparticles

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The dynamics of vortex structure for polarizations in free-standing ferroelectric nanoparticles has been numerically investigated based on a thermodynamics-based continuum phase field approach under open-circuit boundary conditions. Both size effect and surface effect have been considered in this work: different assumptions for the extrapolation length have been made for the electric boundary condition and therefore accounting for the intrinsic size effect; the surface effect is studied by introducing the intrinsic surface stress, which causes volume mechanical balancing stress in the nanoparticles below free surfaces. The computed results are summarized in this article for square-shaped nanodots. It has been noticed that the particle size and intrinsic surface stress together play significant roles in the dynamics of vortex structure for polarizations. They affect both polarization configuration and existence conditions in ferroelectric nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scott J.F.: Applications of modern ferroelectrics. Science 315, 954–959 (2007)

    Article  Google Scholar 

  2. Ahn C.H., Rabe K.M., Triscone J.M.: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    Article  Google Scholar 

  3. Naumov I., Bellaiche L., Fu H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature (London) 432, 737–740 (2004)

    Article  Google Scholar 

  4. Rodriguez B.J., Gao X.S., Liu L.F. et al.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009)

    Article  Google Scholar 

  5. Haftel M.I., Gall K.: Density functional theory investigation of surface-stress-induced phase transformations in fcc metal nanowires. Phys. Rev. B 74, 035420 (2006)

    Article  Google Scholar 

  6. Stan G., Ciobanu C.V., Parthangal P.M., Cook R.F.: Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 7, 3691–3697 (2007)

    Article  Google Scholar 

  7. Morozovska A.N., Glinchuk M.D., Eliseev E.A.: Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B 76, 014102 (2007)

    Article  Google Scholar 

  8. Zhang T.Y., Luo M., Chan W.K.: Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] beta-SiC nanowires. J. Appl. Phys. 103, 104308 (2008)

    Article  Google Scholar 

  9. Barai P., Weng G.J.: The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids. Int. J. Plast. 24, 1380–1410 (2008)

    Article  MATH  Google Scholar 

  10. Shen L.X., Li J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414 (2004)

    Article  Google Scholar 

  11. Wang J., Kamlah M., Zhang T.Y.: Phase field simulations of ferroelectric nanoparticles with different long-range-electrostatic and -elastic interactions. J. Appl. Phys. 105, 014104 (2009)

    Article  Google Scholar 

  12. Su Y., Du J.N.: Existence conditions for single-vortex structure of polarization in ferroelectric nanoparticles. Appl. Phys. Lett. 95, 012903 (2009)

    Article  Google Scholar 

  13. Kretschmer R., Binder K.: Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys. Rev. B 20, 1065 (1979)

    Article  Google Scholar 

  14. Shchukin V.A., Bimberg D.: Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999)

    Article  Google Scholar 

  15. Zhou Z.H., Gao X.S., Wang J., Fujihara K., Ramakrishna S., Nagarajan V.: Giant strain in PbZr0.2 Ti0.8O3 nanowires. Appl. Phys. Lett. 90, 052902 (2007)

    Article  Google Scholar 

  16. Uchino K., Sadanaga E., Hirose T.: Dependence of the crystal-structure on particle-size in barium-titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)

    Article  Google Scholar 

  17. Speck J.S., Pompe W.: Domain configurations due to multiple misfit relaxation mechanisms in epitaxial ferroelectric thin-films.1. Theory. J. Appl. Phys. 76, 466–476 (1994)

    Article  Google Scholar 

  18. Shuttleworth R.: The surface tension of solids. Proc. Phys. Soc. Lond. Sect. A 63, 444–457 (1950)

    Article  Google Scholar 

  19. Su Y., Landis C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55, 280–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Su Y., Weng G.J.: A polycrystal model for the anisotropic behavior of a fully poled ferroelectric ceramic. J. Appl. Phys. 100(114110), 1–8 (2006)

    Google Scholar 

  21. Su Y., Weng G.J.: A polycrystal hysteresis model for ferroelectric ceramics. Proc. R. Soc. A-Math. Phy. 462, 1573–1592 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Su Y., Weng G.J.: A self-consistent polycrystal model for the spontaneous polarization of ferroelectric ceramics. Proc. R. Soc. A-Math. Phy. 462, 1763–1789 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Su Y., Weng G.J.: Microstructural evolution and overall response of an initially isotropic ferroelectric polycrystal under an applied electric field. Mech. Mater. 41, 1179–1191 (2009)

    Article  Google Scholar 

  24. Huber J.E.: Micromechanical modelling of ferroelectrics. Curr. Opin. Solid State Mater. Sci. 9, 100–106 (2005)

    Article  Google Scholar 

  25. Chen L.Q.: Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  26. Wang J., Su Y.: Stability of polarization vortices within two interacting ferroelectric nanoparticles. Phys. Lett. A 375, 1019–1022 (2011)

    Article  Google Scholar 

  27. Su Y., Chen H., Li J.J., Soh A.K., Weng G.J.: Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films. J. Appl. Phys. 110, 084108 (2011)

    Article  Google Scholar 

  28. Chen W.J., Zheng Y., Wang B.: Phase field simulations of stress controlling the vortex domain structures in ferroelectric nanosheets. Appl. Phys. Lett. 100, 062901 (2012)

    Article  Google Scholar 

  29. Gurtin M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu J., Wu Z., Liu Z., Yan Q., Wu J., Duan W.: Phase diagram of ferroelectric BaTiO3 ultrathin films under open-circuit conditions. J. Phys.Condens. Matter 20, 135203 (2008)

    Article  Google Scholar 

  31. Vendik O.G., Zubko S.P.: Ferroelectric phase transition and maximum dielectric permittivity of displacement type ferroelectrics, Ba x Sr1-x TiO3. J. Appl. Phys. 88, 5343 (2000)

    Article  Google Scholar 

  32. Hudak O.: Paraelectric-ferroelectric phase transitions in small spherical particles. Ferroelectrics 375, 92–106 (2008)

    Article  Google Scholar 

  33. Su Y., Du J.N.: Effect of intrinsic surface stress on single-vortex structure of polarization in ferroelectric nanodisks. Appl. Phys. Lett. 96, 162905 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y. On the dynamics of vortex structure in ferroelectric nanoparticles. Acta Mech 224, 1175–1184 (2013). https://doi.org/10.1007/s00707-013-0861-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0861-y

Keywords

Navigation