Skip to main content
Log in

Thermal buckling of a nanoplate with small-scale effects

  • Note
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, thermal buckling properties of a nanoplate with small-scale effects are studied. Based on the nonlocal continuum theory, critical temperatures for the nonlocal Kirchhoff and Mindlin plate theories are derived. The thermal buckling characteristics are presented with different models. The influences of the scale coefficients, half-wave numbers, width ratios, and the ratios of the width to the thickness are discussed. From this work, it can be observed that the small-scale effects are significant for the thermal buckling properties. Both the half-wave number and width ratio have influence. The nonlocal Kirchhoff plate theory is valid for the thin nanoplate, and the nonlocal Mindlin plate theory is more appropriate for simulating the mechanical behaviors of the thick nanoplate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Thostenson E.T., Ren Z.F., Chou T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  3. Baughman R.H., Zakhidov A.A., de Heer W.A.: Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)

    Article  Google Scholar 

  4. Gibson R.F., Ayorinde E.O., Wen Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Article  Google Scholar 

  5. Chong K.P.: Nano science and engineering in solid mechanics. Acta Mech. Solida Sinica 21, 95–103 (2008)

    Google Scholar 

  6. Wang X., Cai H.: Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes. Acta Materialia 54, 2067–2074 (2006)

    Article  Google Scholar 

  7. Wang Q., Varadan V.K.: Wave characteristics of carbon nanotubes. Int. J. Solids Struct. 43, 254–265 (2006)

    Article  MATH  Google Scholar 

  8. Reddy C.D., Lu C., Rajendran S., Liew K.M.: Free vibration analysis of fluid-conveying single-walled carbon nanotubes. Appl. Phys. Lett. 90, 133122 (2007)

    Article  Google Scholar 

  9. Chowdhury S.C., Okabe T.: Computer simulation of carbon nanotube pull-out from polymer by the molecular dynamics method. Compos. Part A 38, 747–754 (2007)

    Article  Google Scholar 

  10. Wang L., Ni Q., Li M.: Buckling instability of double-wall carbon nanotubes conveying fluid. Comput. Mater. Sci. 44, 821–825 (2008)

    Article  Google Scholar 

  11. Wang L.F., Guo W.L., Hu H.Y.: Flexural wave dispersion in multi-walled carbon nanotubes conveying fluids. Acta Mech. Solida Sinica 22, 623–629 (2009)

    Google Scholar 

  12. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  14. Peddieson J., Buchanan G.R., McNitt R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  15. Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  Google Scholar 

  16. Lim C.W., Wang C.M.: Exact variational nonlocal stress modeling with asymptotic higher-order strain gradients for nanobeams. J. Appl. Phys. 101, 054312 (2007)

    Article  Google Scholar 

  17. Li X.F., Wang B.L., Mai Y.W.: Effects of a surrounding elastic medium on flexural waves propagating in carbon nanotubes via nonlocal elasticity. J. Appl. Phys. 103, 074309 (2008)

    Article  Google Scholar 

  18. Duan, W.H., Wang, C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (5 pp) (2007)

    Google Scholar 

  19. Pradhan S.C., Murmu T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47, 268–274 (2009)

    Article  Google Scholar 

  20. Murmu T., Pradhan S.C.: Buckling of biaxially compressed orthotropic plates at small scales. Mech. Res. Commun. 36, 933–938 (2009)

    Article  Google Scholar 

  21. Kitipornchai S., He X.Q., Liew K.M.: Continuum model for the vibration of multilayered graphene sheets. Phys. Rev. B 72, 075443 (2005)

    Article  Google Scholar 

  22. He X.Q., Kitipornchai S., Liew K.M.: Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16, 2086–2091 (2005)

    Article  Google Scholar 

  23. Murmu T., Pradhan S.C.: Small-scale effect on the free in-plane vibration of nanoplates by nonlocal continuum model. Physica E 41, 1628–1633 (2009)

    Article  Google Scholar 

  24. Wang Y.Z., Li F.M., Kishimoto K.: Scale effects on the flexural wave propagation in nanoplate embedded in elastic matrix with initial stress. Appl. Phys. A 99, 907–911 (2010)

    Article  Google Scholar 

  25. Wang Y.Z., Li F.M., Kishimoto K.: Flexural wave propagation in double-layered nanoplates with small scale effects. J. Appl. Phys. 108, 064519 (2010)

    Article  Google Scholar 

  26. Jiang H., Liu B., Huang Y., Hwang K.C.: Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126, 265–270 (2004)

    Article  Google Scholar 

  27. Yao X.H., Han Q.: Investigation of axially compressed buckling of multi-walled carbon nanotube under temperature field. Compos. Sci. Technol. 67, 125–134 (2007)

    Article  Google Scholar 

  28. Zhang, Y.Q., Liu, X., Liu, G.R.: Thermal effect on transverse vibrations of double-walled carbon nanotubes. Nanotechnology 18, 445701 (7 pp) (2007)

    Google Scholar 

  29. Tounsi A., Heireche H., Berrabah H.M., Benzair A., Boumia L.: Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field. J. Appl. Phys. 104, 104301 (2008)

    Article  Google Scholar 

  30. Lee H.L., Chang W.J.: A closed-form solution for critical buckling temperature of a single- walled carbon nanotube. Physica E 41, 1492–1494 (2009)

    Article  Google Scholar 

  31. Wang Y.Z., Li F.M., Kishimoto K.: Thermal effects on vibration properties of double-layered nanoplates at small scales. Compos. Part B 42, 1311–1317 (2011)

    Article  Google Scholar 

  32. Murmu T., Pradhan S.C.: Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity. J. Appl. Phys. 106, 104301 (2009)

    Article  Google Scholar 

  33. Timoshenko S.P., Gere J.M.: Theory of Elastic Stability. 2nd edn. McGraw Hill, New York (1961)

    Google Scholar 

  34. Wang Q., Varadan V.K., Quek S.T.: Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys. Lett. A 357, 130–135 (2006)

    Article  Google Scholar 

  35. Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (9 pp) (2007)

    Google Scholar 

  36. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., Boumia, L.: The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. J. Phys. D: Appl. Phys. 41, 225404 (10 pp) (2008)

    Google Scholar 

  37. Pradhan S.C., Murmu T.: Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Physica E 42, 1293–1301 (2010)

    Article  Google Scholar 

  38. Reddy J.N.: Mechanics of Laminated Composite Plates: Theory and Analysis. Chemical Rubber Company, Boca Raton (1997)

    MATH  Google Scholar 

  39. Lu P., Zhang P.Q., Lee H.P., Wang C.M., Reddy J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pradhan S.C., Phadikar J.K.: Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)

    Article  Google Scholar 

  41. Achenbach J.D.: Wave Propagation in Elastic Solids. North-Holland, Oxford (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Ze Wang or Feng-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YZ., Cui, HT., Li, FM. et al. Thermal buckling of a nanoplate with small-scale effects. Acta Mech 224, 1299–1307 (2013). https://doi.org/10.1007/s00707-013-0857-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0857-7

Keywords

Navigation