Skip to main content
Log in

Effective behavior of porous elastomers containing aligned spheroidal voids

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The theoretical need to recognize the link between the basic microstructure of nonlinear porous materials and their macroscopic mechanical behavior is continuously rising owing to the existing engineering applications. In this regard, a semi-analytical homogenization model is proposed to establish an overall, continuum-level constitutive law for nonlinear elastic materials containing prolate/oblate spheroidal voids undergoing finite axisymmetric deformations. The microgeometry of the porous materials is taken to be voided spheroid assemblage consisting of confocally voided spheroids of all sizes having the same orientation. Following a kinematically admissible deformation field for a confocally voided spheroid, which is the basic constituent of the microstructure, we make use of an energy-averaging procedure to obtain a constitutive relation between the macroscopic nominal stress and deformation gradient. In this work, both prolate and oblate voids are considered. As a numerical example, we study macroscopic nominal stress components for a hyperelastic porous material consisting of a neo-Hookean matrix and prolate/oblate voids subjected to 3-D and plane strain dilatational loadings. In this numerical study, the relation between the relevant microstructural variables (i.e., initial porosity and void aspect ratio) for a rather large range of applied stretch is put into evidence for two types of loading. Finally, a finite element (FE) simulation is presented, and the homogenization model is assessed through comparison of its predictions with the corresponding FE results. The illustrated agreement between the results demonstrates a good accuracy of the model up to rather large deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemat-Nasser S., Hori M.: Micromechanics: Overall Properties of Heterogeneous Solids. Elsevier, Amsterdam (1993)

    MATH  Google Scholar 

  2. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  3. Buryachenko V.: Micromechanics of Heterogeneous Materials. Springer, Berlin (2007)

    Book  Google Scholar 

  4. Danielsson M., Parks D.M., Boyce M.C.: Constitutive modeling of porous hyperelastic materials. Mech. Mater. 36, 347–358 (2004)

    Article  Google Scholar 

  5. Lopez-Pamies O., Ponte Castaneda P.: Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: II—results. J. Mech. Phys. Solids 55, 1702–1728 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bucknall CB.: Toughened Plastics. Applied Science, London (1977)

    Google Scholar 

  7. Talbot D.R.S., Willis J.R.: Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math. 35, 39–54 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ponte Castaneda P.: Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I. Theory. J. Mech. Phys. Solids 50, 737–757 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lopez-Pamies O., Ponte Castaneda P.: Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: I—analysis. J. Mech. Phys. Solids 55, 1677–1701 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hashin Z.: The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 43–50 (1962)

    MathSciNet  Google Scholar 

  11. Hashin, Z., Rosen, B.: The elastic moduli of fiber reinforced materials. J. Appl. Mech. 31, 223–32 (1964)

    Google Scholar 

  12. Hashin Z.: Large isotropic elastic deformation of composites and porous media. Int. J. Solids Struc. 21, 711–720 (1985)

    Article  MATH  Google Scholar 

  13. Kakavas PA., Anifantis N.K.: Effective moduli of hyperelastic porous media at large deformation. Acta Mech. 160, 127–147 (2003)

    Article  MATH  Google Scholar 

  14. deBotton G., Hariton I., Socolsky E.A.: Neo-Hookean fiber-reinforced composites in finite elasticity. J. Mech. Phys. Solids 54, 533–559 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. deBotton, G., Hariton, I.: Out-of-plane shear deformation of a neo-hookean fiber composite. Phys. Lett. A 354, 156–60 (2006)

    Google Scholar 

  16. Avazmohammadi R., Naghdabadi R.: Strain energy-based homogenization of non-linear elastic particulate composites. Int. J. Eng. Sci. 47, 1038–1048 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Avazmohammadi R., Naghdabadi R., Weng G.J.: Finite anti-plane shear deformation of nonlinear composites reinforced by elliptic fibers. Mech. Mater. 41, 868–877 (2009)

    Article  Google Scholar 

  18. Goudarzi, T., Lopez-Pamies, O.: Numerical modeling of the nonlinear elastic response of filled elastomers via composite-sphere assemblages. J. Appl. Mech. (2013) (in press)

  19. Zhao Y.H., Tandon G.P., Weng G.J.: Elastic moduli for a class of porous materials. Acta. Mech. 76, 105–131 (1989)

    Article  MATH  Google Scholar 

  20. Bouchart V., Brieu M., Kondo D., Nait Abdelaziz M.: Implementation and numerical verification of a non-linear homoge- nization method applied to hyperelastic composites. Comput. Mater. Sci. 43, 670–680 (2008)

    Article  MATH  Google Scholar 

  21. Benveniste Y., Milton G.W.: New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages. J. Mech. Phys. Solids 51, 1773–1813 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gologanu M., Leblond J.-B., Devaux J.: Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids. 41, 1723–1754 (1993)

    Article  MATH  Google Scholar 

  23. Gologanu, M., Leblond, J.B., Devaux, J.: Approximate models for ductile metals containing nonspherical voids-case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Tech. Trans. ASME 116, 290–297 (1994)

    Google Scholar 

  24. Hou H., Abeyaratne R.: Cavitation in elastic and elastic–plastic solids. J. Mech. Phys. Solids 40, 571–592 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hill R.: On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 326, 131–147 (1972)

    Article  MATH  Google Scholar 

  26. Criscione J.C., Douglas A.S., Hunter W.C.: Physically based strain invariant set for materials exhibiting transversely isotropic behavior. J. Mech. Phys. Solids 49, 871–897 (2001)

    Article  MATH  Google Scholar 

  27. Criscione J.C.: Rivlin’s representation formula is ill-conceived for the determination of response functions via biaxial testing. J. Elast. 70, 129–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ogden R.W.: Nonlinear Elastic Deformations. Halsted Press, New York (1984)

    MATH  Google Scholar 

  29. Siruguet K., Leblond J.B.: Effect of void locking by inclusions upon the plastic behavior of porous ductile solids— I: theoretical modeling and numerical study of void growth. Int. J. Plast. 20, 225–254 (2004)

    Article  MATH  Google Scholar 

  30. Li Y., Ramesh K.T.: Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal matrix–matrix composites at high rates of strain. Acta. Mater. 46, 5633–5646 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Avazmohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avazmohammadi, R., Naghdabadi, R. Effective behavior of porous elastomers containing aligned spheroidal voids. Acta Mech 224, 1901–1915 (2013). https://doi.org/10.1007/s00707-013-0853-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0853-y

Keywords

Navigation