Skip to main content
Log in

Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A variational approach for fully coupled dynamic irreversible thermoelasticity is developed for continua, which considers both the conservative and dissipative character in terms of mixed variables. By introducing a consistent variational scheme for the spatial and temporal discretization of the governing equations, a mixed continuum element is established under the Hamiltonian-Lagrangian formalism. The proposed method leads to the development of minimum principles in discrete form with the proper selection of state variables and temporal action sum operators. Consequently, this novel mixed variational formulation can provide the basis for a class of optimization-based methods for irreversible thermomechanics. Several applications are considered to demonstrate the robustness of the proposed variational approach, including transient dynamic response of thermoelastic media due to surface heating caused by ramp- and step-type heat fluxes, and a sequence of laser pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthony K.H.: Hamilton’s action principle and thermodynamics of irreversible processes—a unifying procedure for reversible and irreversible processes. J. Non-Newtonian Fluid Mech. 96, 291–339 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apostolakis G., Dargush G.F.: Mixed Lagrangian formulation for linear thermoelastic response of structures. J. Eng. Mech. 138, 508–518 (2012)

    Article  Google Scholar 

  3. Apostolakis, G., Dargush, G.F.: Mixed variational principles for dynamic response of thermoelastic and poroelastic continua. Int. J. Solids Struct. 50, 642–650 (2013)

    Google Scholar 

  4. Askar Altay G., Cengiz Dokmeci M.: Some variational principles for linear coupled thermoelasticity. Int. J. Solids Struct. 33, 3937–3948 (1996)

    Article  MATH  Google Scholar 

  5. Ben-Amoz M.: On a variational theorem in coupled thermoelasticity. J. Appl. Mech. 32, 943–945 (1965)

    Article  Google Scholar 

  6. Biot M.A.: Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys. 25, 1385–1391 (1954)

    Article  MATH  Google Scholar 

  7. Biot M.A.: Variational principles in irreversible thermodynamics with application to viscoelasticity. Phys. Rev. 97, 1463–1469 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biot M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boley B.A., Weiner J.H.: Theory of Thermal Stresses. Wiley, New York (1960)

    MATH  Google Scholar 

  10. Cadzow J.A.: Discrete calculus of variations. Int. J. Control 11, 393–407 (1970)

    Article  MATH  Google Scholar 

  11. Cannarozzi A.A., Ubertini F.: A mixed variational method for linear coupled thermoelastic analysis. Int. J. Solids Struct. 38, 717–739 (2001)

    Article  MATH  Google Scholar 

  12. Carter J.P., Booker J.R.: Finite element analysis of coupled thermoelasticity. Comput. Struct. 31, 73–80 (1989)

    Article  Google Scholar 

  13. Chen J., Dargush G.F.: Boundary element method for dynamic poroelastic and thermoelastic analyses. Int. J. Solids Struct. 32, 2257–2278 (1995)

    Article  MATH  Google Scholar 

  14. Chen T.C., Weng C.I.: Generalized coupled transient thermoelastic plane problems by Laplace transform/finite element method. J. Appl. Mech. ASME 55, 377–382 (1988)

    Article  MATH  Google Scholar 

  15. Chester M.: Second sound in solids. Phys. Rev. 131, 2013–2015 (1963)

    Article  Google Scholar 

  16. Danilovskaya V.I.: Thermal stresses in an elastic half-space due to a sudden heating of its boundary. Prikl. Mek. 14, 316–318 (1950)

    MathSciNet  Google Scholar 

  17. Farhat C., Park K.C., Dubois-Pelerin Y.: An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput. Methods Appl. Mech. Eng. 85, 349–365 (1991)

    Article  MATH  Google Scholar 

  18. Fourier J.: Analytical Theory of Heat. English translation in 1878 by Alexander Freeman. Cambridge University Press, London (1822)

    Google Scholar 

  19. Gibbs J.: Fourier’s series. Nature 59, 200 (1898)

    Article  Google Scholar 

  20. Gibbs J.: Fourier’s series. Nature 59, 606 (1899)

    Article  Google Scholar 

  21. de Groot S.R.: Thermodynamics of Irreversible Processes. North-Holland Publishing Company, Amsterdam (1951)

    MATH  Google Scholar 

  22. Hamilton W.R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)

    Article  Google Scholar 

  23. Hamilton W.R.: Second essay on a general method in dynamics. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)

    Article  Google Scholar 

  24. Hector L.G. Jr, Kim W.S., Ozisik M.N.: Hyperbolic heat conduction due to a mode locked laser pulse train. Int. J. Eng. Sci. 30, 1731–1744 (1992)

    Article  Google Scholar 

  25. Herrmann G.: On variational principles in thermoelasticity and heat conduction. Q. Appl. Maths 21(2), 151–155 (1963)

    Google Scholar 

  26. Keramidas G.A., Ting E.C.: A finite element formulation for thermal stress analysis. Part I: Variational formulation. Nucl. Eng. Des. 39, 267–275 (1976)

    Article  Google Scholar 

  27. Keramidas G.A., Ting E.C.: A finite element formulation for thermal stress analysis. Part II: Finite element formulation. Nucl. Eng. Des. 39, 277–287 (1976)

    Article  Google Scholar 

  28. Lee T.W., Sim W.J.: Efficient time-domain finite element analysis for dynamic coupled thermoelasticity. Comput. Struct. 45, 785–793 (1992)

    Article  MATH  Google Scholar 

  29. Manolis G.D., Beskos D.E.: Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity. Acta Mech. 76, 89–104 (1989)

    Article  MATH  Google Scholar 

  30. Matlab Computer Software: The Language of technical computing. The MathWorks Inc., Natick, MA (2006)

  31. Maugin G.A., Kalpakides V.K.: A Hamiltonian formulation for elasticity and thermoelasticity. J. Phys. A Math. Gen. 35, 10775–10788 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  Google Scholar 

  33. Nayfeh A., Nemat-Nasser S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53–69 (1971)

    Article  MATH  Google Scholar 

  34. Nickell R.E., Sackman J.L.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech. 35, 255–266 (1968)

    Article  MATH  Google Scholar 

  35. Nickell R.E., Sackman J.L.: Variational principles for linear coupled thermoelasticity. Q. Appl. Math. 26, 11–26 (1968)

    MathSciNet  MATH  Google Scholar 

  36. Nowacki W.: Thermo-Elasticity. 2nd edn. Pergamon Press, New York (1986)

    Google Scholar 

  37. Oden J.T.: Finite element analysis of nonlinear problems in dynamical theory of coupled thermoelasticity. Nucl. Eng. Des. 10, 465–475 (1969)

    Article  Google Scholar 

  38. Onsager L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  39. Onsager L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  MATH  Google Scholar 

  40. Prathap G., Naganarayana B.P.: Consistent thermal stress evaluation in finite elements. Comput. Struct. 54, 415–426 (1995)

    Article  MATH  Google Scholar 

  41. Prevost J.H., Tao D.: Dynamic coupled thermoelasticity problems with relaxation times. J. Appl. Mech. ASME 50, 817–822 (1983)

    Article  MATH  Google Scholar 

  42. Prigogine I.: Introduction to Thermodynamics of Irreversible Processes. 3rd edn. Interscience Publishers, New York (1967)

    Google Scholar 

  43. Rafalski P.: A variational principle for the coupled thermoelastic problem. Int. J. Eng. Sci. 6, 465–471 (1968)

    Article  MATH  Google Scholar 

  44. Sanderson T., Ume C., Jarzynski J.: Hyperbolic heat conduction effects caused by temporally modulated laser pulses. Ultrasonics 33, 423–427 (1995)

    Article  Google Scholar 

  45. Serra E., Bonaldi M.: A finite element formulation for thermoelastic damping analysis. Int. J. Numer. Methods Eng. 78, 671–691 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sivaselvan M.V., Reinhorn A.M.: Lagrangian approach to structural collapse simulation. J. Eng. Mech. ASCE 132, 795–805 (2006)

    Article  Google Scholar 

  47. Sivaselvan M.V., Lavan O., Dargush G.F., Kurino H., Hyodo Y., Fukuda R., Sato K., Apostolakis G., Reinhorn A.M.: Numerical collapse simulation of large-scale structural systems using an optimization-based algorithm. Earthq. Eng. Struct. Dyn. 38, 655–677 (2009)

    Article  Google Scholar 

  48. Sladek J., Sladek V., Solek P., Tan C.L., Zhang C.: Two- and three-dimensional transient thermoelastic analysis by the MLPG method. Comput. Model. Eng. Sci. 47, 61–95 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Sternberg E., Chakravorty J.G.: On inertia effects in a transient thermoelastic problem. J. Appl. Mech. ASME 26, 503–509 (1959)

    MathSciNet  Google Scholar 

  50. Tamma K.K., Railkar S.B.: A generalized hybrid transfinite element computational approach for nonlinear/linear unified thermal-structural analysis. Comput. Struct. 26, 655–665 (1987)

    Article  MATH  Google Scholar 

  51. Tamma K.K., Railkar S.B.: On heat displacement based hybrid transfinite element formulations for uncoupled/coupled thermally induced stress wave propagation. Comput. Struct. 30, 1025–1036 (1988)

    Article  MATH  Google Scholar 

  52. Vujanovic B., Djukic D.: On one variational principle of Hamilton’s type for nonlinear heat transfer problem. Int. J. Heat Mass Trans. 15, 1111–1123 (1972)

    Article  Google Scholar 

  53. Wriggers P., Reese S.: Thermoelastic stability of trusses with temperature-dependent constitutive relations. Int. J. Numer. Methods Eng. 35, 1891–1906 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Dargush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apostolakis, G., Dargush, G.F. Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form. Acta Mech 224, 2065–2088 (2013). https://doi.org/10.1007/s00707-013-0843-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0843-0

Keywords

Navigation