Skip to main content

The shape of a liquid surface in a uniformly rotating cylinder in the presence of surface tension


The free-surface shape of a liquid in a uniformly rotating cylinder in the presence of surface tension is determined before and after the onset of dewetting at the bottom of the cylinder. Two scenarios of liquid withdrawal from the bottom are considered, with and without deposition of thin film behind the liquid. The governing non-linear differential equations for the axisymmetric liquid shapes are solved numerically by an iterative procedure similar to that used to determine the equilibrium shape of a liquid drop deposited on a solid substrate. The numerical results presented are for cylinders with comparable radii to the capillary length of liquid in the gravitational or reduced gravitational fields. The capillary effects are particularly pronounced for hydrophobic surfaces, which oppose the rotation-induced lifting of the liquid and intensify dewetting at the bottom surface of the cylinder. The free-surface shape is then analyzed under zero gravity conditions. A closed-form solution is obtained in the rotation range before the onset of dewetting, while an iterative scheme is applied to determine the liquid shape after the onset of dewetting. A variety of shapes, corresponding to different contact angles and speeds of rotation, are calculated and discussed.

This is a preview of subscription content, access via your institution.


  1. 1

    Greenspan H.P.: The Theory of Rotating Fluids. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  2. 2

    Myshkis, A.D., Babskii, V.G., Kopachevskii, N.D., Slobozhanin, L.A., Tyuptsov, A.D.: Low-gravity Fluid Mechanics. Mathematical Theory of Capillary Phenomena. Springer-Verlag, Berlin (1987). Translated from Russian edition: Gidromekhanika nevesomosti. Nauka, Moscow (1976)

  3. 3

    Langbein, D.: Capillary Surfaces. Shape–Stability–Dynamics, in Particular Under Weightlessness. Springer Tracts in Modern Physics 178. Springer, Berlin (2002)

  4. 4

    Ibrahim R.A.: Liquid Sloshing Dynamics. Theory and Applications. Cambridge University Press, Cambridge (2005)

    MATH  Book  Google Scholar 

  5. 5

    Turkington R.R., Osborne D.V.: On the influence of surface tension on the surfcae profile of a rotating liquid. Proc. Phys. Soc. 82, 614–619 (1963)

    Article  Google Scholar 

  6. 6

    Radoev, R.: On a possibility of surface tension measurement via rotating meniscus. Ann. Univ. Sofia–Fac. Chim. 61, 361–366 (1966/67)

    Google Scholar 

  7. 7

    Ogorelec Z.: On the shape of a rotating liquid surface. Eur. J. Phys. 18, 256–259 (1995)

    Article  Google Scholar 

  8. 8

    Wasserman M.L., Slattery J.C.: The surface profile of a rotating liquid. Proc. Phys. Soc. 84, 795–802 (1964)

    MATH  Article  Google Scholar 

  9. 9

    Aronson M.P., Princen H.M.: Shape of a meniscus in a rotating vertical tube. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 74, 555–574 (1978)

    Google Scholar 

  10. 10

    Slobozhanian, L.A.: Hydrostatics in weak force fields. Equilibrium shapes of the surface of a rotating liquid under zero-g. Fluid Dynamics 1, 113–116 (1966). Translated from Russian: Izv. Ak. Nauk SSSR, Mekh. Zhidkosti i Gaza 1, 157–160 (1966)

  11. 11

    Wichterle K., Wichterle O.: Surface shapes of fluids in rotating vessels. Appl. Sci. Res. 22, 150–158 (1970)

    Google Scholar 

  12. 12

    Bauer H.F.: Rotating finite liquid systems under zero gravity. Forsch. Ingenieurwes. 48, 159–179 (1982)

    Google Scholar 

  13. 13

    Leslie F.: Measurements of rotating bubble shapes in a low-gravity environment. J. Fluid Mech. 161, 269–279 (1985)

    Article  Google Scholar 

  14. 14

    Hung R.J., Tsao Y.D., Hong B.B., Leslie F.W.: Dynamics of surface tension in microgravity environment. Progress Aeronaut. Astronaut. 127, 124–150 (1990)

    Google Scholar 

  15. 15

    Brown R.A., Scriven L.E.: The shapes and stability of captive rotating drops. Phil. Trans. Roy. Soc. Lond. 297, 51–79 (1980)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16

    Benner R.E. Jr., Basaran O.A., Scriven L.E.: Equilibria, stability and bifurcations of rotating columns of fluid subjected to planar disturbances. Proc. R. Soc. Lond. A 433, 81–99 (1991)

    MATH  Article  Google Scholar 

  17. 17

    Boadi D.K., Marmur A.: Equilibrium of a liquid in a rotating groove. Chem Eng. Sci. 47, 4287–4294 (1992)

    Article  Google Scholar 

  18. 18

    Kruse H.P., Mahalov A., Marsden J.E.: On the Hamiltonian structure and three-dimensional instabilities of rotating liquid bridges. Fluid Dyn. Res. 24, 37–59 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  19. 19

    Haas, A., Pollak, T., Aksel, N.: Side wall effects in thin gravity-driven film flow—steady and draining flow. Phys. Fluids 23, 062107-1–11 (2011)

    Google Scholar 

  20. 20

    Pollak, T., Haas, A., Aksel, N.: Side wall effects on the instability of thin gravity-driven films-From long-wave to short-wave instability. Phys. Fluids 23, 094110-1–7 (2011)

    Google Scholar 

  21. 21

    Stewartson K.: On almost rigid rotations. J. Fluid Mech. 2, 17–26 (1957)

    MathSciNet  Article  Google Scholar 

  22. 22

    Miles J.W.: Free-surface oscillations in a slowly rotating liquid. J. Fluid Mech. 17, 187–194 (1963)

    Google Scholar 

  23. 23

    Greenspan H.P., Howard L.N.: On a time-dependent motion of a rotating fluid. J. Fluid Mech. 17, 385–404 (1963)

    MathSciNet  MATH  Article  Google Scholar 

  24. 24

    Neitzel G.P., Davis S.H.: Centrifugal instabilities during spin-down to rest in finite cylinders. Numer. Exp. J. Fluid Mech. 102, 329–352 (1981)

    MATH  Article  Google Scholar 

  25. 25

    Bormashenko E., Whyman G.: Variational approach to wetting problems: calculation of a shape of sessile liquid drop deposited on a solid substrate in external field. Chem. Phys. Lett. 463, 103–105 (2008)

    Article  Google Scholar 

  26. 26

    Lubarda V.A., Talke K.A.: Configurational forces and shape of a sessile droplet on a rotating solid substrate. Theor. Appl. Mech. 39, 27–54 (2012)

    MathSciNet  Article  Google Scholar 

  27. 27

    de Gennes P.G.: Wetting: statics and dynamics. Rev. Modern Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  28. 28

    Blokhuis E.M., Shilkrot Y., Widom B.: Young’s law with gravity. Mol. Phys. 86, 891–899 (1995)

    Article  Google Scholar 

  29. 29

    Lubarda V.A.: Mechanics of a liquid drop deposited on a solid substrate. Soft Matter 8, 10288–10297 (2012)

    Article  Google Scholar 

  30. 30

    Finn R.: Equilibrium capillary surfaces. Springer, New York (1986)

    MATH  Book  Google Scholar 

  31. 31

    Finn R.: Non uniqueness and uniqueness of capillary surfaces. Manuscripta Math. 61, 347–372 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32

    Bashforth F., Adams J.C.: An Attempt to Test the Theory of Capillary Action. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  33. 33

    Padday, J.F.: Theory of surface tension. In: Matijevic, E. (ed.) Surface and Colloid Science, vol. 1 , pp. 101–151. Wiley, New York (1969)

  34. 34

    Padday, J.F.: Capillary in microgravity. In: Pétré, G., Sanfeld, A. (eds.) Capillarity Today. Lecture Notes in Physics, vol. 386, pp. 90–107. Springer, New York (1991)

  35. 35

    Blokhuis, E.M.: Liquid drops at surfaces. In: Hartland, S. (ed.) Surface and Interfacial Tension: Measurement, Theory, and Applications, Surfactant Science Series, vol. 119, pp. 147–193. Marcel Dekker, Inc., New York (2005)

  36. 36

    Li D., Cheng P., Neumann A.W.: Contact angle measurement by axisymmetric drop shape analysis (ADSA). Adv. Coll. Interface Sci. 39, 347–382 (1992)

    Article  Google Scholar 

  37. 37

    Mukhopadhyay, S., Behringer, R.: Wetting dynamics of thin liquid films and drops under Marangoni and centrifugal forces. J. Phys. Condens. Matter 21, 464123-1–9 (2009)

    Google Scholar 

  38. 38

    Slobozhanin L.A., Alexander J.I.D., Fedoseyev A.I.: Shape and stability of doubly connected axisymmetric free surfaces in a cylindrical container. Phys. Fluids 11, 3668–3677 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39

    Widom B.: Line tension and the shape of a sessile drop. J. Phys. Chem. 99, 2803–2806 (1995)

    Article  Google Scholar 

  40. 40

    de Gennes P.G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena. Springer, Berlin (2004)

    MATH  Book  Google Scholar 

  41. 41

    Lubarda V.A., Talke K.A.: Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model. Langmuir 27, 10705–10713 (2011)

    Article  Google Scholar 

  42. 42

    White F.M.: Fluid Mechanics, 6th ed.. McGraw-Hill, New York (2008)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vlado A. Lubarda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lubarda, V.A. The shape of a liquid surface in a uniformly rotating cylinder in the presence of surface tension. Acta Mech 224, 1365–1382 (2013).

Download citation


  • Surface Tension
  • Contact Angle
  • Liquid Surface
  • Liquid Drop
  • Angular Speed