Skip to main content
Log in

Homogenization of very rough interfaces separating two piezoelectric solids

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The main aim of this paper is to derive homogenized equations in explicit form of the linear piezoelectricity in two-dimensional domains separated by an interface which highly oscillates between two parallel straight lines. First, the basic equations of the linear theory of piezoelectricity are written down in matrix form. Then, following the techniques presented recently by these authors, the explicit homogenized equation and the associate continuity condition, for generally anisotropic piezoelectric materials, are derived. They are then written down in component form for some specific cases. Since the obtained equations are totally explicit, they are significant in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaki K.A., Neureuther A.R.: Scattering from a perfectly conducting surface with a sinusoidal height profile: TE polarization. IEEE Trans. Antennas Propag. 19, 208–214 (1971)

    Article  Google Scholar 

  2. Waterman P.C.: Scattering by periodic surfaces. J. Acoust. Soc. Am. 57, 791–802 (1975)

    Article  MATH  Google Scholar 

  3. Belyaev A.G., Mikheev A.G., Shamaev A.S.: Plane wave diffraction by a rapidly oscillating surface. Comput. Math. Math. Phys. 32, 1121–1133 (1982)

    MathSciNet  Google Scholar 

  4. Ishimacu A., Chen J.S.: Scattering from very rough metallic and dielectric surfaces: a theory based on the modified Kirchhoff approximation. Waves Random Media 1, 21–34 (1991)

    Article  Google Scholar 

  5. Abboud T., Ammari H.: Diffraction at a curved grating: TM and TE cases, homogenization. J. Math. Anal. Appl. 202, 995–1026 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao G., Bonnetier E.: Optimal design of periodic diffractive structures. Appl. Math. Optim. 43, 103–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Saillard M., Sentenac A.: Rigorous solutions for electromagnetic scattering from rough surfaces. Waves Random Media 11, R103–R137 (2001)

    Article  MathSciNet  Google Scholar 

  8. Fokkema J.T.: Reflection and transmission of acoustic waves by the periodic interface between a solid and a fluid. Wave Motion 3, 145–157 (1981)

    Article  MATH  Google Scholar 

  9. Talbot J.R.S., Titchener J.B., Willis J.R.: The reflection of electromagnetic waves from very rough interfaces. Wave Motion 12, 245–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. DeSanto J.A.: A new formulation of electromagnetic scattering from rough dielectric interfaces. J. Electromagn. Waves Appl. 7, 1293–1306 (1993)

    Article  Google Scholar 

  11. Dravinski M.: Scattering of waves by a sedimentary basin with a corrugated interface. Bull. Seism. Soc. Am. 97(1B), 256–264 (2007)

    Article  Google Scholar 

  12. Singh S.S., Tomar S.K.: Quasi-P-waves at a corrugated interface between two dissimilar monoclinic elastic half-spaces. Int. J. Solids Struct. 44, 197–228 (2007)

    Article  MATH  Google Scholar 

  13. Tomar S.K., Kaur J.: SH-waves at a corrugated interface between a dry sandy half-space and an anisotropic elastic half-space. Acta Mech. 190, 1–28 (2007)

    Article  MATH  Google Scholar 

  14. Tomar S.K., Kaur J.: Shear waves at a corrugated interface between anisotropic elastic and visco-elastic solid half-spaces. J. Seismol. 11, 235–258 (2007)

    Article  Google Scholar 

  15. Singh S.S., Tomar S.K.: qP-wave at a corrugated interface between two dissimilar pre-stressed elastic half-spaces. J. Sound Vib. 317, 687–708 (2008)

    Article  Google Scholar 

  16. Cheng K.T., Olhoff N.: An investigation concerning optimal design of solid elastic plates. Int. J. Solids Struct. 17, 795–810 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Achdou Y., Pironneau O., Valentin F.: Effective boundary conditions for laminar flows over rough boundaries. J. Comput. Phys. 147, 187–218 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Belyaev A.G., Piatnitski A.L., Chechkin G.A.: Asymptotic behavior of a solution to a boundary-value problem in a perforated domain with oscillating boundary. Shiberian Math. J. 39(4), 730–754 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Zhang C.H., Achenbach J.D.: Dispersion and attenuation of surface wave due to distributed surface-breaking cracks. J. Acoust. Soc. Am. 88, 1986–1992 (1990)

    Article  Google Scholar 

  20. Pecorari C.: Modelling of variation of Rayleigh wave velocity due to distributions of one-dimensional surface-breaking cracks. J. Acoust. Soc. Am. 100, 1542–1550 (1996)

    Article  Google Scholar 

  21. Pecorari C.: On the effect of the residual stress field on the dispersion of a Rayleigh wave propagating on a cracked surface. J. Acoust. Soc. Am. 103, 616–617 (1998)

    Article  Google Scholar 

  22. Goa H.: A boundary perturbation analysis for elastic inclusions and interfaces. Int. J. Solids Struct. 39, 703–725 (1991)

    Google Scholar 

  23. Givoli D., Elishakoff I.: Stress concentration at a nearly circular hole with uncertain irregularities. ASME J. Appl. Mech. 59, S65–S71 (1992)

    Article  MATH  Google Scholar 

  24. Wang C.-H., Chao C.-K.: On perturbation solutions of nearly circular inclusion problems in plane thermoelasticity. ASME J. Appl. Mech. 69, 36–44 (2002)

    Article  MATH  Google Scholar 

  25. Ekneligoda T.C., Zimmermam R.W.: Boundary perturbation solution for nearly circular holes and rigid inclusions in an infinite elastic medium. ASME J. Appl. Mech. 75, 011015 (2008)

    Article  Google Scholar 

  26. Dyke M.: Perturbation Methods in Fluid Mechanics. Parabolic, Stanford (1975)

    MATH  Google Scholar 

  27. Kohler W., Papanicolaou G.C., Varadhan S.: Boundary and Interface Problems in Regions With Very Rough Boundaries. In: Chow, P., Kohler, W., Papanicolaou, G. (eds.) Multiple Scattering and Waves in Random Media, pp. 165–197. North-Holland, Amsterdam (1981)

    Google Scholar 

  28. Bensoussan A., Lions J.B., Papanicolaou J.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  29. Sanchez-Palencia, E.: Nonhomogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Heidelberg (1980)

  30. Bakhvalov N., Panasenko G.: Homogenisation: Averaging of Processes in Periodic Media: Mathematical Problems of the Mechanics of Composite Materials. Kluwer, Dordrecht (1989)

    Book  MATH  Google Scholar 

  31. Nevard J., Keller J.B.: Homogenization of rough boundaries and interfaces. SIAM J. Appl. Math. 57, 1660–1686 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vinh P.C., Tung D.X.: Homogenized equations of the linear elasticity in two-dimensional domains with very rough interfaces. Mech. Res. Commun. 37, 285–288 (2010)

    Article  Google Scholar 

  33. Vinh, P.C., Tung, D.X.: Homogenization of rough two-dimensional interfaces separating two anisotropic solids. ASME J. Appl. Mech. 78, 041014-1 (7 pages) (2011)

    Google Scholar 

  34. Vinh P.C., Tung D.X.: Homogenized equations of the linear elasticity theory in two-dimensional domains with interfaces highly oscillating between two circles. Acta Mech. 218, 333–348 (2011)

    Article  MATH  Google Scholar 

  35. Vinh P.C., Tung D.X.: Explicit homogenized equation of a boundary-value problem in two-dimensional domains separated by an interface highly oscillating between two concentric ellipses. Arch. Mech. 64, 461–476 (2012)

    Google Scholar 

  36. Wang J., Fang S., Chen L.: The state vector methods for space axisymmetric problems in multilayered piezoelectric media. Int. J. solids Struct. 39, 3959–3970 (2002)

    Article  MATH  Google Scholar 

  37. Ting T.C.T.: Anisotropic Elasticity: Theory and Applications. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  38. Every A.G., McCurdy A.K.: Phonon focusing in piezoelectric crystals. Phys. Rev. B 36(3), 1432–1447 (1987)

    Article  Google Scholar 

  39. Yang J.S., Zhou H.G.: Acoustoelectric amplification of piezoelectric surface waves. Acta Mech. 172, 113–122 (2004)

    Article  MATH  Google Scholar 

  40. Mauritsson K., Bostrom A., Folkow P.D.: Modelling of thin piezoelectric layers on plates. Wave Motion 45, 616–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. San I.E.: Plane strain problems in piezoelectricity. Int. J. Eng. Sci. 25, 1511–1523 (1987)

    Article  Google Scholar 

  42. Yuan X., Zhu Z.H.: Reflection and refraction of plane waves at interface between two piezoelectric media. Acta Mech. 223, 2509–2521 (2012)

    Article  MathSciNet  Google Scholar 

  43. Pang Y., Wang Y.-S., Lui J.-X., Fang D.-N.: Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media. Int. J. Eng. Sci. 46, 1098–1110 (2008)

    Article  MATH  Google Scholar 

  44. Shuvalov A.L., Gorkunova A.S.: Transverse acoustic waves in piezoelectric and ferroelectric antiphase superlattices. Phys. Rev. B 59, 9070–9077 (1998)

    Article  Google Scholar 

  45. Lam M. et al.: Acoustic wave transmission through piezoelectric structured materials. Ultrasonics 49, 424–431 (2009)

    Article  Google Scholar 

  46. Singh B.: Wave propagation in a prestressed piezoelectric half-space. Acta Mech. 211, 337–344 (2010)

    Article  MATH  Google Scholar 

  47. Kuang Z.-B., Yuan X.-G.: Reflection and transmission of waves in pyroelectric and piezoelectric materials. J. Sound. Vib. 330, 1111–1120 (2011)

    Article  Google Scholar 

  48. Rodríguez-Ramos R. et al.: Shear horizontal wave in multilayered piezoelectric structures: Effect of frequency, incidence angle and constructive parameters. Int. J. Solids Struct. 48, 2941–2947 (2011)

    Article  Google Scholar 

  49. Zhou Z.-D., Yang F.-P., Kuang Z.-B.: Reflection and transmission of plane waves at the interface of pyroelectric bi-materials. J. Sound Vib. 331, 3558–3566 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Chi Vinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinh, P.C., Tung, D.X. Homogenization of very rough interfaces separating two piezoelectric solids. Acta Mech 224, 1077–1088 (2013). https://doi.org/10.1007/s00707-012-0804-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0804-z

Keywords

Navigation