Skip to main content
Log in

Large eddy simulation of turbulent heat transfer in pipe flows with respect to Reynolds and Prandtl number effects

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Heat transfer in a fully developed turbulent pipe flow is investigated by the use of the large eddy simulation technique. Isoflux condition is imposed at the wall. Four Prandtl numbers are considered (0.71, 3, 5, and 7) and three Reynolds numbers (5,500, 10,000, and 20,000). The effects of Reynolds and Prandtl numbers on turbulent heat transfer in pipe flow are investigated in order to obtain a more detailed knowledge of the thermal field in circular pipe flow. The objective of this study is also to examine the effectiveness of the large eddy simulation approach for predicting the turbulent heat transfer at different Prandtl numbers larger than 0.71, for various Reynolds numbers up to 20,000. Validation is achieved by comparing the present predictions to the available results of the literature. The effects of Prandtl and Reynolds numbers on many statistical quantities, such as mean temperature profiles, RMS of fluctuating temperature, turbulent heat fluxes, higher-order statistics, and heat transfer coefficient, are examined. Visualizations of instantaneous filtered temperature fields are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C d :

Coefficient of the dynamic model

C p :

Specific heat at constant pressure

D :

Pipe diameter (m)

D m :

Molecular diffusivity

F(Θ′):

Flatness factor

h :

Heat transfer coefficient, \({h = -\frac{k}{T_{\rm w}-T_{\rm b}} \frac{\partial T}{\partial r} ({W}/{m}^{2}{K}})\)

k :

Thermal conductivity (W/m K)

L :

Length of the computational domain (m)

Nu :

Nusselt number, Nuh D/k

Pe :

Peclet number, PeRe Pr

Pr :

Prandtl number, Prν/α

q w :

Uniform heat flux at the wall (W/m2)

Re :

Reynolds number ReU b D

r :

Dimensionless coordinate in radial direction scaled by the pipe radius

R :

Pipe radius (m)

S(Θ′):

Skewness factor

Sc :

Schmidt number, Sc =  ν/D m

T :

Temperature (K)

T b :

Bulk temperature

T r :

Reference temperature, T r = q w/ρ C p U b

T w :

Wall temperature (K)

T τ :

Friction temperature, T τ = q w/sρ C p u τ

u τ :

Friction velocity (m/s)

U b :

Bulk velocity (m/s)

v r, v z, v θ :

Dimensionless wall-normal, axial, and azimuthal velocity components

y + :

Distance from the wall in wall units, y + = (1−r)u τ

z :

Dimensionless coordinate in axial direction

α :

Thermal diffusivity

θ :

Dimensionless coordinate in circumferential direction

Θ :

Dimensionless temperature, Θ = 〈T w〉−T/T r

ν :

Kinematic viscosity (m2/s)

ρ :

Density (kg/m3)

〈(.)〉:

Statistically averaged

(.)+ :

Normalized by u τ, ν and T τ

(.)′:

Fluctuation component

References

  1. Kawamura H., Abe H., Matsuo Y.: DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects. Int. J. Heat Fluid Flow 20, 196–207 (1999)

    Article  Google Scholar 

  2. Abe H., Kawamura H., Matsuo Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ =  1020 with Pr =  0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)

    Article  Google Scholar 

  3. Kasagi, N., Ohtsubo, Y.: Direct numerical simulation of low Prandtl number thermal field in a turbulent channel flow. In: Turbulent Shear Flows, vol. 8. Springer, Berlin (1993)

  4. Kawamura H., Ohsaka K., Abe H., Yamamoto K.: DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int. J. Heat Fluid Flow 19, 482–491 (1998)

    Article  Google Scholar 

  5. Calmet I., Magnaudet J.: Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow. Phys. Fluids 9, 438–455 (1997)

    Article  Google Scholar 

  6. Na Y., Papavassiliou D.V., Hanratty T.J.: Use of direct numerical simulation to study the effect of Prandtl number on temperature fields. Int. J. Heat Fluid Flow 20, 187–195 (1999)

    Article  Google Scholar 

  7. Dong Y.H., Lu X.Y., Zhuang H.: An investigation of the Prandtl number effect on turbulent heat transfer in channel flows by large eddy simulation. Acta Mech. 159, 39–51 (2002)

    Article  MATH  Google Scholar 

  8. Bergant R., Tiselj I., Hestroni G.: Near-wall turbulent heat transfer at Prandtl numbers 1 to 54. Am. Soc. Mech. Eng. Heat Transf. Div. 372(6), 57–65 (2002)

    Google Scholar 

  9. Bergant R., Tiselj I.: The influence of Prandtl number on near-wall turbulent heat transfer. Stronjniski Vestnik/J. Mech. Eng. 148(12), 696–706 (2003)

    Google Scholar 

  10. Hestroni G., Tiselj I., Bergant R., Mosyak A., Pogrebnyak E.: Convection velocity of temperature fluctuations in a turbulent flume. J. Heat Transf. 126, 843–848 (2004)

    Article  Google Scholar 

  11. Mitrovic B.M., Phuong M.L., Papavassiliou D.V.: On the Prandtl or Schmidt number dependence of the turbulent heat or mass transfer coefficient. Chem. Eng. Sci. 59, 543–555 (2004)

    Article  Google Scholar 

  12. Seki Y., Iwamoto K., Kawamura H.: Prandtl number effect on turbulence statistics through high spatial resolution DNS of turbulent heat transfer in a channel flow. Nihon Kikai Gakkai Ronbunshu, B Hen/Trans. Jpn. Soc. Mech. Eng. Part B 76(764), 608–617 (2006)

    Google Scholar 

  13. Schwertfirm, F., Manhart, M.: DNS of passive scalar turbulent channel flow at Pr =  25 DNS-LES approach. In: Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM 2007, vol. 1 Symposia, pp. 1377–1384 (2007)

  14. Tiselj I., Strubelj L.: Pssive scalar transport in turbulent channel flow at high Schmidt numbers. Int. J. Heat Fluid Flow 28, 1204–1214 (2007)

    Article  Google Scholar 

  15. Hasegawa Y., Kasagi N.: Systematic analysis of high Schmidt numbers turbulent mass transfer across clean, contaminated and solid interfaces. Int. J. Heat Fluid Flow 29, 765–773 (2008)

    Article  Google Scholar 

  16. Hasegawa Y., Kasagi N.: Hybrid DNS/LES of high Schmidt numbers mass transfer across turbulent air-water interface. Int. J. Heat Fluid Flow 52, 1012–1022 (2009)

    MATH  Google Scholar 

  17. Inagaki M., Hattori H., Nagano Y.: An improved SGS heat transfer model for various Prandtl number fluids, Nihon Kikai Gakkai Ronbunshu. B Hen/Trans. Jpn. Soc. Mech. Eng. Part B 76(764), 608–617 (2010)

    Google Scholar 

  18. Zang Y., Street R.L., Koseff J.R.: A dynamic mixed subgrid-scale model and ites application to turbulent recirculating flows. Phys. Fluids A 5, 3186 (1993)

    Article  Google Scholar 

  19. Zhong F.Q., Liu N.S., Lu X.Y., Zhuang L.X.: An improved dynamic subgrid-scale model for the large eddy simulation of stratified channel flow. Sci. China 45, 888–899 (2002)

    Google Scholar 

  20. Kropholler H., Carr A.D.: The prediction of heat and mass transfer for turbulent flow in pipes at all values of the Prandtl or Schmidt number. Int. J. Heat Mass Transf. 5, 1191–1205 (1962)

    Article  Google Scholar 

  21. Gowen R.A., Smith J.W.: The effect of the Prandtl number on temperature profiles for heat transfer in turbulent pipe flow. Chem. Eng. Sci. 22, 1701–1711 (1967)

    Article  Google Scholar 

  22. Obot N.T., Das L., Vakili D.E., Green R.A.: The effect of Prandtl number on smooth-tube heat transfer and pressure drop. Int. Commun. Heat Mass Transf. 24(N6), 889–896 (1997)

    Article  Google Scholar 

  23. Shaw D.A., Hanratty T.J.: Turbulent mass transfer rates to a wall for large Schmidt numbers. AIChE J. 23(N1), 28–36 (1977)

    Article  Google Scholar 

  24. Redjem-Saad L., Ould-Rouiss M., Lauriat G.: Direct numerical simulation of turbulent heat transfer in pipe flows: effect of Prandtl number. Int. J. Heat Fluid Flow 28, 847–861 (2007)

    Article  Google Scholar 

  25. Germano M., Piomelli U., Cabot W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  26. Lilly D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  Google Scholar 

  27. Feiz A.A., Ould-Rouis M., Lauriat G.: Large eddy simulation of turbulent flow in a rotating pipe. Int. J. Heat Fluid Flow 24, 412–420 (2003)

    Article  Google Scholar 

  28. Feiz A.A., Ould-Rouis M., Lauriat G.: Turbulence statistics in a fully developed rotating pipe flow. Int. J. Enhanc. Heat Transf. 12, 273–288 (2005)

    Article  Google Scholar 

  29. Eggels J.G.M., Unger F., Weiss M.H., Westerweel J., Adrian R.J., Friedrich R., Nieuwstadt F.T.M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)

    Article  Google Scholar 

  30. Wagner C., Huttl T.J., Friedrich R.: Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput. Fluids 30, 581–590 (2001)

    Article  MATH  Google Scholar 

  31. Chatelain, A.: Simualtion des grandes échelles d’écoulements Turbulents avec transfers de chaleur, PhD Thesis, INP de Grenoble, France (2004)

  32. Montreuil, E.: Simulation numérique pour l’aérothermique avec des modèles sous-maille, PhD thesis, Université Pierre et Marie Curie, France (2000)

  33. Zang T.: Numerical simulation of the dynamics of turbulent boundary layers: perspectives of a transition simulator. Philos. Trans. R. Soc. Lond. A 336, 95–102 (1991)

    Article  MATH  Google Scholar 

  34. Zahrai S., Bark F.H., Karlsson R.I.: On anisotropic subgrid modelling. Eur. J. Mech. B/Fluids 144, 459–486 (1995)

    Google Scholar 

  35. Piller M.: Direct numerical simulation of turbulent forced convection in a pipe. Int. J. Numer. Methods Fluids 49, 583–602 (2005)

    Article  MATH  Google Scholar 

  36. Piomelli U.: Wall-layer models for large-eddy simulations. Progr. Aerosp. Sci. 44, 437–446 (2008)

    Article  Google Scholar 

  37. Baggett, J.S., Jimenez, J., Kravchenko, A.G.: Resolution requirements in large simulations of shear flows, Center, fro Turbulent Research, Annual Research Briefs, pp. 51–66 (1997)

  38. Durst F., Jovanovic J., Sender J.: LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295, 305–335 (1995)

    Article  Google Scholar 

  39. Feiz, A.A.: Simulations des transferts turbulents dans une conduite cylindrique en rotation, PhD Thesis, Univérsité Paris-Est Marne-la-Vallée (2005)

  40. Satake S., Kunugi T.: Direct numerical simulation of turbulent heat transfer in an axially rotating pipe: Reynold stress and scalar-flux budgets. Int. J. Numer. Methods Heat Fluid Flow 12, 985–1008 (2002)

    Article  Google Scholar 

  41. Kader B.A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transf. 24, 1541–1544 (1981)

    Article  Google Scholar 

  42. Gnielinski V.: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Int. Chem. Eng. 16, 359 (1976)

    Google Scholar 

  43. Kader B.A., Yaglom A.M.: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transf. 15, 2329 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ould-Rouiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ould-Rouiss, M., Bousbai, M. & Mazouz, A. Large eddy simulation of turbulent heat transfer in pipe flows with respect to Reynolds and Prandtl number effects. Acta Mech 224, 1133–1155 (2013). https://doi.org/10.1007/s00707-012-0796-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0796-8

Keywords

Navigation