Skip to main content

Enhanced strip-roll coupling concepts for the numerical simulation of flat hot rolling

Abstract

In the present paper, an enhanced iterative algorithm for the effective numerical simulation of the contact between an elastic roll stack and an elasto-viscoplastic strip or plate in hot rolling is presented. The underlying physical process treated here is the forming of metal within a rolling stand, that is, between a lower and an upper roll set, each of which may consist of one or more rolls. The strip material is described elasto-viscoplastically, whereas the roll stack is deformed elastically. Due to the high nonlinearity of the whole problem, the coupling between roll stack and rolled material is performed iteratively. The contact stress distribution resulting from the strip model describing the material flow bounded by the work rolls serves as input for the determination of the deformed work roll surface, which can be performed very accurately and effectively by applying the analytical and numerical methods outlined in this study. The new deformed work roll contours represent the “flow channel” for the next calculation step of the strip model. The accurate coupling of the strip model with the routines for the elastic roll stack deflection is a precondition to get reliable results concerning profile transfer, incompatible strains, and residual stresses inside the strip, which allows the prediction of flatness defects, such as buckling.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Lenard J.G., Pietrzyk M., Cser L.: Mathematical and Physical Simulation of the Properties of Hot Rolled Products. Elsevier, Amsterdam (1999)

    Google Scholar 

  2. 2

    Montmitonnet P., Buessler P.: A review on theoretical analyses of rolling in Europe. ISIJ Int. 31(6), 525–538 (1991)

    Article  Google Scholar 

  3. 3

    Wiklund O., Nilsson A., Sidestam, P.: Flatness and residual stresses during and after rolling. In: Mori, S., Zeitlinger (eds.) Simulation of Materials processing: Theory, Methods and Applications, pp. 507–512 (2001)

  4. 4

    Parteder, E., Kainz, A., Hein, G., Zeman, K.: 3D Modelling Concepts in Hot Strip Rolling. In: Berg- und Hüttenmännische Monatshefte (BHM), 152, 367–371, Springer, Wien (2007)

  5. 5

    Kainz, A., Zeman, K., Widder, M., Parteder, E.: Elasto-plastic simulation concepts for profile transfer and flatness prediction in flat hot rolling. In: AIP Conference Proceedings Numiform 2007, Materials Processing and Design (Modeling, Simulation and Applications), American Institute of Physics, Melville, New York, pp. 1017–1022 (2007)

  6. 6

    Kainz, A., Finstermann, G.: A new Eulerian-Lagrangian hybrid finite element method for the numerical simulation of stationary rolling processes. In: Benyon, J.H. et al., (eds.) Modelling of Metal Rolling Processes 3. IOM Conference Papers, pp. 104–113 (1999)

  7. 7

    Synka J., Kainz A.: A novel mixed Eulerian-Lagrangian finite-element method for steady-state hot rolling processes. Int. J. Mech. Sci. 45(12), 2043–2060 (2004)

    Article  Google Scholar 

  8. 8

    Synka J., Kainz A., Maringer R., Obereder A: Numerical analysis of a new Eulerian-Lagrangian finite-element method applied to steady-state hot rolling processes. Int. J. Numer. Methods Eng. 62(5), 616–638 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9

    Synka J., Kainz A.: Extension of the concept of material objectivity to mixed Eulerian-Lagrangian reference systems. Acta Mech. 166(1–4), 13–25 (2003)

    MATH  Article  Google Scholar 

  10. 10

    Hacquin, A., Montmitonnet, P., Guillerault, J.Ph.: A steady state thermo-elasto-viscoplastic finite element model of rolling with coupled thermo-elastic roll deformation. In: Proceeding Metal Forming 96, Cracovie (1996)

  11. 11

    Belytschko T., Liu W.K., Moran B.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2002)

    Google Scholar 

  12. 12

    Bathe K.J.: Finite Element Procedures. Prentice Hall, New Jersey, USA (1996)

    Google Scholar 

  13. 13

    Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  14. 14

    Widder, M.E.: Method and apparatus for calculating the roll gap contour. European Patent EP 1 240 955 B1 (2004)

  15. 15

    Krimpelstätter, K., Hohenbichler, G., Finstermann, G., Zeman, K., Kainz, A.: New temper rolling model for advanced evaluation of rollability. In: Proceedings of the 3rd Int. Steel Conference on New Developments in Metallurgical Process Technologies, METEC InSteelCon 2007, pp. 394–401 (2007)

  16. 16

    Krimpelstätter, K., Zeman, K., Kainz, A.: Non circular arc temper rolling model considering radial and circumferential work roll displacements. In: Proceedings of the 8th Int. Conference on Numerical Methods in Industrial Forming Processes (Numiform 2004)

  17. 17

    Verlinden B., Driver J., Samajdar I., Doherty R.D.: Thermo-Mechanical Processing of Metallic Materials. Elsevier, Amsterdam (2007)

    Google Scholar 

  18. 18

    Totten G., Howes M., Inoue T.: Handbook of Residual Stress and Deformation of Steel. ASM International, Materials Park, Ohio, USA (2002)

    Google Scholar 

  19. 19

    Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff Ltd, Groningen (1953)

    MATH  Google Scholar 

  20. 20

    Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity, pp. 191. Dover Publications, New York (1944)

    MATH  Google Scholar 

  21. 21

    Papkovich P.F.: The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions. Izvestiya Akademii Nauk SSSR, Physics-Mathematical Series 10, 1425–1435 (1932)

    Google Scholar 

  22. 22

    Neuber H.: Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Zeitschrift für Angewandte Mathematik und Mechanik 14, 203–212 (1934)

    MATH  Article  Google Scholar 

  23. 23

    Yao J.C.: Long cylindrical tube subjected to two diametrically opposite loads. Aeronaut. Q. 20, 365–381 (1969)

    Google Scholar 

  24. 24

    Betten J.: Kontinuumsmechanik (Elasto-, Plasto- und Kriechmechanik). Springer, Berlin (1993)

    MATH  Book  Google Scholar 

  25. 25

    Kobayashi S., Oh S., Altan T.: Metal Forming and the Finite-Element Method. Oxford University Press, New York (1989)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Kainz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kainz, A.J., Widder, M.E. & Zeman, K. Enhanced strip-roll coupling concepts for the numerical simulation of flat hot rolling. Acta Mech 224, 957–983 (2013). https://doi.org/10.1007/s00707-012-0795-9

Download citation

Keywords

  • Work Roll
  • Rolling Force
  • Backup Roll
  • Contact Pressure Distribution
  • Normal Contact Stress