Skip to main content
Log in

Integration of a particle-based homogenization theory into a general damage-based constitutive model to improve the modelling of void nucleation to coalescence

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A novel framework and integration scheme has been developed to implement a secant-based homogenization theory for particle-reinforced plasticity into an existing damage-based constitutive model. In this approach, the material is envisaged as a three-phase composite composed of voids and particles embedded in a ductile matrix. Two successive homogenization theories (damage- and particle-based) are then applied to determine the macro-mechanical response of the material as well as the average stress state within the constituents as a function of the particle shape, composition and volume fraction. By identifying the stress state within the particles and the matrix, void nucleation can be accurately represented and the void growth and coalescence models are improved through knowledge of the stress state within the matrix. The performance of this loosely coupled model is analytically evaluated using idealized composite materials that contain inclusions of various shapes to elucidate the influence of the inclusion morphology on damage evolution and coalescence. The present work provides an efficient, albeit approximate, algorithm that can be readily included into existing damage-based constitutive models to improve their predictions of damage evolution, particularly related to void nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Z., Niemi E.: Studies on the ductility predictions by different local failure criteria. Eng. Fract. Mech. 48, 529–540 (1994)

    Article  Google Scholar 

  2. Zhang Z., Niemi E.: Analyzing ductile fracture using dual dilational constitutive equations. Fatig. Fract. Eng. Mater. Struct. 17, 695–707 (1994)

    Article  Google Scholar 

  3. Gologanu, M., Leblond, J.-B., Perrin, G., Devaux, J.: Recent extensions of Gurson’s model for porous ductile metals. In: Suquet, P. (ed.) Continuum Micromechanics, pp. 61–130. Springer, New York (1997)

  4. Pardoen T., Hutchinson J.W.: An extended model for void growth and coalescence. J. Mech. Phys. Solids 48, 2512–2567 (2000)

    Article  Google Scholar 

  5. Zhang Z., Thaulow C., Odegard J.: A complete Gurson model approach for ductile fracture. Eng. Fract. Mech. 67, 155–168 (2000)

    Article  Google Scholar 

  6. Benzerga A.A.: Micromechanics of coalescence in ductile fracture. J. Mech. Phys. Solids 50, 1331–1362 (2002)

    Article  MATH  Google Scholar 

  7. Pardoen T.: Numerical simulation of low stress triaxiality ductile fracture. Comput. Struct. 84, 1641–1650 (2006)

    Article  Google Scholar 

  8. Lassance D., Scheyvaerts F., Pardoen T.: Growth and coalescence of penny-shaped voids in metallic alloys. Eng. Fract. Mech. 73, 1009–1034 (2006)

    Article  Google Scholar 

  9. Pardoen T.: Numerical simulation of low stress triaxiality ductile fracture. Comp. Struct. 84, 1641–1650 (2006)

    Article  Google Scholar 

  10. Fabregue D., Pardoen T.: A constitutive model for elastoplastic solids containing primary and secondary voids. J. Mech. Phys. Solids 56, 719–741 (2008)

    Article  MATH  Google Scholar 

  11. Scheyvaerts F., Pardoen T., Onck P.R: A new model for void coalescence by internal necking. Int. J. Dam. Mech. 19, 95–126 (2010)

    Article  Google Scholar 

  12. Gurson A.L.: Continuum theory of ductile rupture by void nucleation and growth—part I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  13. Tvergaard V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17, 389–407 (1981)

    Article  Google Scholar 

  14. Beremin F.M.: Cavity formation from inclusions in ductile fracture of A508 steel. Metall. Trans. A 12, 723–731 (1981)

    Article  Google Scholar 

  15. Chu C.C., Needleman A.: Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102, 249–256 (1980)

    Article  Google Scholar 

  16. Berveiller M., Zaoui A.: An extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mech. Phys. Solids 26, 325–344 (1979)

    Article  Google Scholar 

  17. Weng G.J.: Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions. Int. J. Eng. Sci. 22, 845–856 (1984)

    Article  MATH  Google Scholar 

  18. Tandon G.P., Weng G.J.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Tech. 27, 111–132 (1986)

    Article  Google Scholar 

  19. Tandon G.P., Weng G.J.: A theory of particle-reinforced plasticity. J. Appl. Mech. 55, 126–135 (1988)

    Article  Google Scholar 

  20. Suquet, P.: Effective properties of nonlinear composites. In: Continuum Micromechanics. CISM Course and Lecture Notes, pp. 197–264 (1997)

  21. Hill R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  MATH  Google Scholar 

  22. Gonzalez C., Segurado J., Llorca J.: Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models. J. Mech. Phys. Solids 52, 1573–1593 (2004)

    Article  MATH  Google Scholar 

  23. Doghri I., Ouaar A.: Homogenization of two-phase elasto-plastic composite materials and structures: study of cyclic plasticity and numerical algorithms. Int. J. Solids Struct. 40, 1681–1712 (2003)

    Article  MATH  Google Scholar 

  24. Christensen R.M.: A critical evaluation of a class of micro-mechanical models. J. Mech. Phys. Solids 38, 379–404 (1990)

    Article  Google Scholar 

  25. Ponte-Castaneda P.: The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39, 45–71 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kailasam M., Ponte Castaneda P.: A general constitutive theory for linear and nonlinear particulate media with microstructure evolution. J. Mech. Phys. Solids 46, 65–427 (1998)

    Article  MathSciNet  Google Scholar 

  27. Ponte-Castaneda P., Suquet P.: Nonlinear composites. Adv. Appl. Mech. 34, 171–301 (1998)

    Article  Google Scholar 

  28. Chaboche J.L., Kanoute P., Roos A.: On the capabilities of mean-field approaches for the description of plasticity in metal-matrix composites. Int. J. Plast. 21, 1409–1434 (2005)

    Article  MATH  Google Scholar 

  29. Pierard O., Gonzalez C., Segurado J., Llorca J., Doghri I.: Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions. Int. J. Solids Struct. 44, 6945–6962 (2007)

    Article  MATH  Google Scholar 

  30. Mueller R., Mortensen A.: Simplified prediction of the monotonic uniaxial stress–strain curve of non-linear particulate composites. Acta Mater. 54, 2145–2155 (2006)

    Article  Google Scholar 

  31. Mori T., Tanaka K.:: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  32. Butcher, C. (2011) A multi-scale damage percolation model of ductile fracture. Ph.D. thesis, University of New Brunswick, Canada. http://dspace.hil.unb.ca:8080/handle/1882/35391

  33. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ragab A.R.: Application of an extended void growth model with strain hardening and void shape evolution to ductile fracture under axisymmetric tension. Eng. Fract. Mech. 71, 1515–1534 (2004)

    Article  Google Scholar 

  35. Thomason P.F.: Ductile Fracture of Metals. Pergamon Press, Oxford (1990)

    Google Scholar 

  36. Tohgo K., Mochizuki K.: Damage mechanics approach to material-dependency of fracture toughness in aluminum alloys. Int. J. Dam. Mech. 11, 151–170 (2002)

    Article  Google Scholar 

  37. Worswick M.J., Pelletier P.: Numerical simulation of ductile fracture during high strain rate deformation. Eur. Phys. J. Appl. Phys. 4, 257–267 (1998)

    Article  Google Scholar 

  38. Butcher C., Chen Z.T.: Characterizing void nucleation in a damage-based constitutive model using notched tensile sheet specimens. Theor. Appl. Fract. Mech. 55, 140–147 (2011)

    Article  Google Scholar 

  39. Needleman A.: Continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987)

    Article  MATH  Google Scholar 

  40. Moulin N., Jeulin D., Klöcker H.: Stress concentrations in non-convex elastic particles embedded in a ductile matrix. Int. J. Eng. Sci. 47, 170–191 (2009)

    Article  Google Scholar 

  41. Griffith A.A.: The phenomena of rupture and flow and solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliff Butcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butcher, C., Chen, Z. & Worswick, M. Integration of a particle-based homogenization theory into a general damage-based constitutive model to improve the modelling of void nucleation to coalescence. Acta Mech 224, 139–156 (2013). https://doi.org/10.1007/s00707-012-0740-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0740-y

Keywords

Navigation