Skip to main content
Log in

Fundamental solutions to Hertzian contact problems at nanoscale

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Based on surface elasticity theory, the effects of surface energy on Hertzian contact problems at nanoscale are considered. The complex variable function method is adopted to derive the fundamental solutions to the Hertzian contact problem. As examples, the deformations induced by uniformly distributed traction and concentrated force are analyzed in detail. The results reveal some interesting characteristics in contact mechanics, which are distinctly different from those in classical elasticity theory. At nanoscale, the shear displacement gradient on the deformed surface transits continuously across the uniformly distributed loading boundary as a result of surface effects. In addition, for nano-indentation, the indent depth depends strongly on the surface stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dingreville R., Qu J., Cherkaoui M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827–1854 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang Z.P., Wang J.: A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech. 182, 195–210 (2006)

    Article  MATH  Google Scholar 

  3. Huang Z.P., Sun L.: Size-dependent effective properties of a heterogeneous material with interface energy effect: from finite deformation theory to infinitesimal strain analysis. Acta Mech. 190, 151–163 (2007)

    Article  MATH  Google Scholar 

  4. Wong E., Sheehan P.E., Liebe C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  5. Kulkarni A.J., Zhou M.: Surface-effects-dominated thermal and mechanical responses. Acta Mech. Sin. 22, 217–224 (2006)

    Article  MATH  Google Scholar 

  6. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  Google Scholar 

  7. Sharma P., Ganti S., Bhate N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  8. Duan H.L., Wang J., Huang Z.P., Karihaloo B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ou Z.Y., Wang G.F., Wang T.J.: Effect of residual surface tension on the stress concentration around a nanosized spheroidal cavity. Int. J. Eng. Sci. 46, 475–485 (2008)

    Article  Google Scholar 

  10. Ou Z.Y., Wang G.F., Wang T.J.: Elastic fields around a nanosized spheroidal cavity under arbitrary uniform remote loadings. Eur. J. Mech. A Solids 28, 110–120 (2009)

    Article  MATH  Google Scholar 

  11. Ou Z.Y., Wang G.F., Wang T.J.: An analytical solution for the elastic fields near spheroidal nano-inclusions. Acta Mech. Sin. 25, 821–830 (2009)

    Article  MathSciNet  Google Scholar 

  12. Ou Z.Y., Pang S.D.: A screw dislocation interacting with a coated nano-inhomogeneity incorporating interface stress. Mater. Sci. Eng. A 528, 2762–2775 (2011)

    Article  Google Scholar 

  13. Wang G.F., Feng X.Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2009)

    Article  Google Scholar 

  14. Oliver W.C., Pharr G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  Google Scholar 

  15. Ma Q., Clarke D.: Size-dependent hardness of Silver single-crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  16. Elmustafa A., Eastman J.A., Rittner M.N., Weertman J.R., Stone D.S.: Indentation size effect: large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scripta Materialia 43, 951–955 (2000)

    Article  Google Scholar 

  17. Nix W.D., Gao H.: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  18. Tymiak N.I., Kramer D.E., Bahr D.F., Gerberich W.W.: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021–1034 (2001)

    Article  Google Scholar 

  19. Huang Y.G., Zhang F., Hwang K.C.: A model of size effects in nano-indentation. J. Mech. Phys. Solids 54, 1668–1686 (2006)

    Article  MATH  Google Scholar 

  20. Begley M.R., Hutchinson J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46, 2049–2068 (1998)

    Article  MATH  Google Scholar 

  21. Xue Z., Huang Y., Hwang K.C., Li M.: The influence of indenter tip radius on the micro-indentation hardness. J. Eng. Mater. Technol. 124, 371–379 (2002)

    Article  Google Scholar 

  22. Gerberich W.W., Tymiak N.I., Grunlan J.C., Horstemeyer M.F., Baskes M.I.: Interpretations of indentation size effects. J. Appl. Mech. 69, 433–442 (2002)

    Article  MATH  Google Scholar 

  23. Horstemeyer M.F., Baskes M.I.: Atomistic finite deformation simulation: a discussion on length scale effects in relation to mechanical stresses. J. Eng. Mater. Technol. 121, 114–119 (1999)

    Article  Google Scholar 

  24. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gurtin M.E., Weissmuller J., Larche F.: A general theory of curved deformable interfaces in solid at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  26. Sharma P., Ganti S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71, 663–671 (2004)

    Article  MATH  Google Scholar 

  27. Yang F.Q.: Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, 3516–3520 (2004)

    Article  Google Scholar 

  28. Gao W., Yu S.W., Huang G.Y.: Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17, 1118–1122 (2006)

    Article  Google Scholar 

  29. Wang G.F., Feng X.Q.: Effects of surface stresses on contact problems at nanoscale. J. Appl. Phys. 101, 013510 (2007)

    Article  Google Scholar 

  30. Huang G.Y., Yu S.W.: Effect of surface elasticity on the interaction between steps. J. Appl. Mech. 74, 821–823 (2007)

    Article  Google Scholar 

  31. Zhao X.J., Rajapakse R.K.N.D.: Analytical solutions for a surface-loaded isotropic elastic layer with surface energy effects. Int. J. Eng. Sci. 47, 1433–1444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff Ltd., Groningen (1963)

  33. Norman B., Richard A.H.: Asymptotic Expansions of Integrals. Holt, Rinehart and Winston, New York (1975)

    MATH  Google Scholar 

  34. Johnson K.L.: Contact Mechanics. Cambridge University Press, London (1985)

    MATH  Google Scholar 

  35. Wang L.G., Kratzer P., Scheffler M., Moll N.: Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy. Phys. Rev. Lett. 82, 4042–4045 (1999)

    Article  Google Scholar 

  36. Shenoy V.B.: Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39, 4039–4052 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Y. Ou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, Z.Y., Pang, S.D. Fundamental solutions to Hertzian contact problems at nanoscale. Acta Mech 224, 109–121 (2013). https://doi.org/10.1007/s00707-012-0731-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0731-z

Keywords

Navigation