Skip to main content
Log in

Active control of geometrically nonlinear transient vibrations of laminated composite cylindrical panels using piezoelectric fiber reinforced composite

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper addresses the analysis of active constrained layer damping (ACLD) of geometrically nonlinear transient vibrations of laminated thin composite cylindrical panels using piezoelectric-fiber- reinforced composite (PFRC) materials. The constraining layer of the ACLD treatment is considered to be made of the PFRC materials. The Golla–Hughes–McTavish (GHM) method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. The Von Kármán type-nonlinear strain-displacement relations and a simple first-order shear deformation theory are used for deriving this electromechanical coupled problem. A three-dimensional finite element (FE) model of smart composite panels integrated with the patches of such ACLD treatment has been developed to demonstrate the performance of these patches on enhancing the damping characteristics of thin symmetric and antisymmetric laminated cylindrical panels in controlling the geometrically nonlinear transient vibrations. The numerical results indicate that the ACLD patches significantly improve the damping characteristics of both symmetric and antisymmetric panels for suppressing the geometrically nonlinear transient vibrations of the panels. The effect of the shallowness angle of the panels on the control authority of the patches has also been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey T., Hubbard J.E.: Distributed piezoelectric polymer active vibration control of a cantilever beam. J. Guid. Control Dyn. 8, 605–611 (1985)

    Article  MATH  Google Scholar 

  2. Baz A., Poh S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126, 327–343 (1988)

    Article  Google Scholar 

  3. Lee C.K., Chiang W.W., Sulivan O.: Piezoelectric modal sensor/actuator pairs for critical active damping vibration control. J. Acoust. Soc. Am. 90(1), 374–384 (1991)

    Article  Google Scholar 

  4. Hanagud S., Obal M.W., Calise A.J.: Optimal vibration control by the use of piezoceramic sensors and actuators. J. Guid. Control Dyn. 15(5), 1199–1206 (1992)

    Article  Google Scholar 

  5. Devasia S., Tesfay M., Padu B., Bayo E.A.J.: Piezoelectric actuator design for vibration suppression: placement and sizing. J. Guid. Control Dyn. 16, 859–864 (1993)

    Article  Google Scholar 

  6. Gu Y., Clark R.L., Fuller C.R.: Experiments on active control of plate vibration using piezoelectric actuators and polyvinylidene fluoride modal sensors. J. Vib. Acoust. 116, 303–308 (1994)

    Article  Google Scholar 

  7. Kim J., Varadan V.V., V. K., Bao X.Q.: Finite element modeling of a smart cantilever plate and comparison with experiments. Smart Mater. Struct. 5(2), 165–170 (1996)

    Article  Google Scholar 

  8. Heyliger P.: Exact solutions for simply supported laminated piezoelectric plates. ASME J. Appl. Mech. 64, 299–306 (1997)

    Article  MATH  Google Scholar 

  9. He L.H.: Axisymmetric response of circular plates with piezoelectric layers: an exact solution. Int. J. Mech. Sci. 40(12), 1265–1279 (1998)

    Article  MATH  Google Scholar 

  10. Vel S.S., Batra R.C.: Exact solution for rectangular sandwich plates with embedded piezoelectric hear actuators. AIAA J. 39(7), 1363–1373 (2001)

    Article  Google Scholar 

  11. Irschick H.: A review on static and dynamic shape control of structures by piezoelectric and actuators. Eng. Struct. 24(1), 5–11 (2002)

    Article  Google Scholar 

  12. Ray M.C.: Optimal control of laminated shells with piezoelectric sensor and actuator layers. AIAA J. 41, 1151–1157 (2003)

    Article  Google Scholar 

  13. Xu S.X., Koko T.S.: Finite element analysis and design of actively controlled piezoelectric smart structures. Finite Elements Anal. Des. 40(3), 241–262 (2004)

    Article  Google Scholar 

  14. Peng F., Ng A., Hu Y.R.: Actuator placement optimization and adaptive vibration control of plate smart structures. J. Intell. Mater. Syst. Struct. 16, 263–271 (2005)

    Article  Google Scholar 

  15. Meng G., Ye L., Dong X.J., Wei K.X.: Closed loop finite element modeling of piezoelectric smart structures. Shock Vib. 13(1), 1–12 (2006)

    Google Scholar 

  16. Kumari P., Nath J.K., Dumir P.C., Kapuria S.: 2D exact solutions for flat hybrid piezoelectric and magnetoelastic angle-ply panels under harmonic load. Smart Mater. Struct. 16(5), 1651–1661 (2007)

    Article  Google Scholar 

  17. Kwak M.K., Heo S., Jeong M.: Dynamic modeling and active vibration controller design for a cylindrical shell equipped with piezoelectric sensors and actuators. J. Sound Vib. 321, 510–524 (2009)

    Article  Google Scholar 

  18. Balamurugan V., Narayanan S.: Finite element modeling of stiffened piezolaminated plates and shells with piezoelectric layers for active vibration control. Smart Mater. Struct. 19, 105003 (2010)

    Article  Google Scholar 

  19. Baz, A.: Active constrained layer damping. U.S. patent 5,485,053 (1996)

  20. Baz A., Ro J.: Vibration control of plates with active constrained layer damping. Smart Mater. Struct. 5, 135–144 (1996)

    Google Scholar 

  21. Ray M.C., Baz A.: Optimization of energy dissipation of active constrained layer damping treatment of plates. J. Sound Vib. 208, 391–406 (1997)

    Article  Google Scholar 

  22. Ray M.C., Baz A.: Control of nonlinear vibration of beams using active constrained layer damping treatment. J. Vib. Control 7, 539–549 (2001)

    Article  MATH  Google Scholar 

  23. Ray M.C., Oh J., Baz A.: Active constrained layer damping of thin cylindrical shells. J. Sound Vib. 240(5), 921–935 (2001)

    Article  Google Scholar 

  24. Chantalakhana C., Stanway R.: Active constrained layer damping of clamped-clamped plate vibrations. J. Sound Vib. 241(5), 755–777 (2001)

    Article  Google Scholar 

  25. Ro J, Baz A.: Optimum placement and control of active constrained layer damping using modal strain energy approach. J. Vib. Control 8, 861–876 (2002)

    Article  MATH  Google Scholar 

  26. Ray M.C., Pradhan A.K.: Active damping of laminated thin cylindrical composite panels using vertically/obliquely reinforced 1-3 piezoelectric composites. Acta Mech. 209(3–4), 201–218 (2010). doi:10.1007/s00707-009-0149-4

    Article  MATH  Google Scholar 

  27. Mallik N., Ray M.C.: Effective coefficients of piezoelectric fiber reinforced composites. AIAA J. 41(4), 704–710 (2003)

    Article  Google Scholar 

  28. Ray M.C., Mallik N.: Performance of smart damping treatment using piezoelectric fiber reinforced composites. AIAA J. 43(1), 184–193 (2005)

    Article  Google Scholar 

  29. Ray M.C., Shivakumar J.: Active constrained layer damping of geometrically nonlinear transient vibrations of composite plates using piezoelectric fiber-reinforced composite. Thin-Walled Struct. 47, 178–189 (2009)

    Article  Google Scholar 

  30. Panda S., Ray M.C.: Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber reinforced composites. Smart Mater. Struct. 17(2), 1–15 (2008)

    Article  Google Scholar 

  31. Sarangi S.K., Ray M.C.: Smart damping of geometrically nonlinear vibrations of laminated composite beams using vertically reinforced 1-3 piezoelectric composites. Smart Mater. Struct. 19, 075020 (2010)

    Article  Google Scholar 

  32. Sarangi S.K., Ray M.C.: Active damping of geometrically nonlinear vibrations of laminated composite plates using vertically/obliquely reinforced 1-3 piezoelectric composites. Acta Mech. 222(3–4), 363–380 (2011). doi:10.1007/s00707-011-0531-x

    Article  MATH  Google Scholar 

  33. Sarangi S.K., Ray M.C.: Active damping of geometrically nonlinear vibrations of laminated composite shallow shells using vertically/obliquely reinforced 1-3 piezoelectric composites. Int. J. Mech. Mater. Des. 7(1), 29–44 (2011)

    Article  Google Scholar 

  34. Reddy J.N., Chandrashekara K.: Nonlinear analysis of laminated shells including transverse shear strains. AIAA J. 23, 40–41 (1985)

    Article  Google Scholar 

  35. Kundu C.K., Han J.H.: Nonlinear buckling analysis of hygrothermoelastic composite shell panels using finite element method. Composites B 40, 313–328 (2009)

    Article  Google Scholar 

  36. Lam M.J., Inman D.J., Saunders W.R.: Hybrid damping models using the Golla_hughes-McTavish method with internally balanced model reduction and output feedback. Smart Mater. Struct. 9, 362–371 (2000)

    Article  Google Scholar 

  37. Mc Tavish D.J., Hughes P.C.: Modeling of linear viscoelastic space structures. J. Vib. Acoust. 115, 103–113 (1993)

    Article  Google Scholar 

  38. Lim Y.-H., Varadan V.V., Varadan K.K.: Closed loop finite element modeling of active constrained layer damping in the time domain analysis. Smart Mater. Struct. 11, 89–97 (2002)

    Article  Google Scholar 

  39. Reddy J.N.: Geometrically nonlinear transient analysis of laminated composite plates. AIAA J. 21(4), 621–629 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Ashok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivakumar, J., Ashok, M.H. & Ray, M.C. Active control of geometrically nonlinear transient vibrations of laminated composite cylindrical panels using piezoelectric fiber reinforced composite. Acta Mech 224, 1–15 (2013). https://doi.org/10.1007/s00707-012-0724-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0724-y

Keywords

Navigation