Skip to main content
Log in

Variations in predicting domain switching of ferroelectric ceramics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, a set of equivalent variational formulations for computing the driving forces for domain switching in ferroelectric materials is presented. It is proven that these formulations allow the free adoption of any couple of mechanical and electric fields as independent variables while obtaining consistent results. In addition, explicit expressions are provided for each formulation which allows for the study of the phase transformation process under different constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merz W.J.: Domain formation and domain wall motions in ferroelectric BaTiO 3 single crystals. Phys. Rev. 95, 690–698 (1954)

    Article  Google Scholar 

  2. Eng L.M., Güntherodt H.-J., Schneider G.A., Köpke U., Saldana J.M.: Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics. Appl. Phys. Lett. 74, 233–235 (1999)

    Article  Google Scholar 

  3. Scott J.F.: Applications of Modern Ferroelectrics. Science. 315, 954–959 (2007)

    Article  Google Scholar 

  4. Merz W.J.: Double hysteresis loop of BaTiO 3 at the Curie point. Phys. Rev. 91, 513–517 (1953)

    Article  Google Scholar 

  5. Kinoshita K., Yamaji A.: Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 47, 371–373 (1976)

    Article  Google Scholar 

  6. Uchino K., Sadanaga E., Hirose T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555–1558 (1989)

    Article  Google Scholar 

  7. Fong D.D., Stephenson G.B., Streiffer S.K., Eastman J.A., Auciello O., Fuoss P.H., Thompson C.: Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004)

    Article  Google Scholar 

  8. Hwang S.C., Lynch C.S., McMeeking R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)

    Article  Google Scholar 

  9. Burcsu E., Ravichandran G., Bhattacharya K.: Large electrostrictive actuation of barium titanate single crystals. J. Mech. Phys. Solid 52, 823–846 (2004)

    Article  Google Scholar 

  10. Hamano T., Towner D.J., Wessels B.W.: Relative dielectric constant of epitaxial BaTiO 3 thin films in the GHz frequency range. Appl. Phys. Lett. 83, 5274–5276 (2003)

    Article  Google Scholar 

  11. Yimnirun R., Ananta S., Meechoowas E., Wongsaenmai S.: Effects of uniaxial stress on dielectric properties lead magnesium niobatelead zirconate titanate ceramics. Phys. Status Solidi. B 36, 1615–1619 (2003)

    Google Scholar 

  12. Nambu S., Sagala D.: Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50, 5838–5847 (1994)

    Article  Google Scholar 

  13. Li Y.L., Hu S.Y., Liu Z.K., Chen L.Q.: Phase-field model of domain structures in ferroelectric thin film. Appl. Phys. Lett. 78, 3878–3880 (2001)

    Article  Google Scholar 

  14. Zhang W., Bhattacharya K.: A computational model of ferroelectric domains. Part I: model formulation and domain switching. Acta Mater. 53, 185–198 (2005)

    Article  Google Scholar 

  15. Chen L.Q.: Phase-field method of phase transitions/domain structures in ferroelectric thin films: review. J. Am. Ceram. Soc. 91, 1835–1844 (2008)

    Article  Google Scholar 

  16. Aubry S., Fago M., Ortiz M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comp. Meth. Appl. Mech. Eng. 192, 2823–2843 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim S.-J., Jiang Q.: A finite element model for rate-dependent behavior of ferroelectric ceramics. Int. J. Solids Struct. 39, 1015–1030 (2002)

    Article  MATH  Google Scholar 

  18. Kamlah M., Liskowsky A.C., McMeeking R.M., Balke H.: Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. Int. J. Solids Struct. 42, 2949–2964 (2005)

    Article  MATH  Google Scholar 

  19. Arockiarajan A., Sivakumar S.M., Sansour C.: A thermodynamically motivated model for ferroelectric ceramics with grain boundary effects. Smart Mater. Struct. 52, 440–445 (2010)

    Google Scholar 

  20. Jayabal K., Menzel A., Arockiarajan A., Srinivasan M.S.: Micromechanical modelling of switching phenomena in polycrystalline piezoceramics: application of a polygonal finite element approach. Comput. Mech. 48, 421–435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li Q., Kuna M.: Inhomogeneity and material configurational forces in three dimensional ferroelectric polycrystals. Eur. J. Mech. A Solids 31, 77–89 (2012)

    Article  MathSciNet  Google Scholar 

  22. Huber J.E., Fleck N.A., Landis C.M., McMeeking R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663–1697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li J., Weng G.J.: A theory of domain switch for the nonlinear behavior of ferroelectric. Proc. R. Soc. Lond. A 455, 3493–3511 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li J., Weng G.J.: A micromechanics-based hysteresis model for ferroelectric ceramics. J. Intell. Mater. Syst. Struct. 12, 79–91 (2001)

    Google Scholar 

  25. Li W.F., Weng G.J.: Micromechanical simulation of spontaneous polarization in ferroelectric crystals. J. Appl. Phys. 90, 2484–2491 (2001)

    Article  Google Scholar 

  26. Li W.F., Weng G.J.: A theory of ferroelectric hysteresis with a superimposed stress. J. Appl. Phys. 91, 3806–3815 (2002)

    Article  Google Scholar 

  27. Li W.F., Weng G.J.: A micromechanics-based thermodynamic model for the domain switch in ferroelectric crystals. Acta Mater. 52, 2489–2496 (2004)

    Article  Google Scholar 

  28. Su Y., Weng G.J.: The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals. J. Mech. Phys. Solids 53, 2071–2099 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li J., Liu D.: On ferroelectric crystals with engineered domain configurations. J. Mech. Phys. Solids 52, 1719–1742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Su Y., Weng G.J.: A self-consistent polycrystal model for the spontaneous polarization of ferroelectric ceramics. Proc. R. Soc. Lond. A 462, 1763–1789 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yen J.H., Shu Y.C., Shieh J., Yeh J.H.: A study of electromechanical switching in ferroelectric single crystals. J. Mech. Phys. Solids 56, 2117–2135 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weng G.J., Wong D.T.: Thermodynamic driving force in ferroelectric crystals with a rank-2 laminated domain pattern, and a study of enchanced electrostriction. J. Mech. Phys. Solids 57, 571–597 (2009)

    Article  MATH  Google Scholar 

  33. Weng G.J.: A theory of triple hysteresis in ferroelectric crystals. J. Appl. Phys. 106, 074109 (2009)

    Article  Google Scholar 

  34. Su Y., Landis C.M.: Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids 55, 280–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Su Y., Weng G.J.: Microstructural evolution and overall response of an initially isotropic ferroelectric polycrystal under an applied electric field. Mech. Mater. 41, 1179–1191 (2009)

    Article  Google Scholar 

  36. Tang W., Fang D.N., Li J.Y.: Two-scale micromechanics-based probabilistic modeling of domain switching in ferroelectric ceramics. J. Mech. Phys. Solids 57, 1683–1701 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Cuitiño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S.F., Tuncer, E.A. & Cuitiño, A.M. Variations in predicting domain switching of ferroelectric ceramics. Acta Mech 223, 2243–2256 (2012). https://doi.org/10.1007/s00707-012-0702-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0702-4

Keywords

Navigation