Skip to main content

Advertisement

Log in

Normally distributed free energy model and creep behavior of ferroelectric polycrystals at room and high temperatures

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A constitutive model that can be used to predict creep behavior of ferroelectric polycrystals at room and high temperatures is proposed. The model consists of the Gibbs free energy function with normal distribution and a switching evolution law with critical driving force. Linear moduli in the free energy function and switching parameters in the switching law are assumed to be linearly dependent on temperature. A ferroelectric polycrystal is modeled by an agglomerate of 210 single crystallites. Compressive stress and electric field-induced creep behavior as well as polarization hysteresis and strain butterfly responses of the model are calculated and compared with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huber J.E., Fleck N.A., Landis C.M., McMeeking R.M.: A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47, 1663–1697 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huber J.E., Fleck N.A.: Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49, 785–811 (2001)

    Article  MATH  Google Scholar 

  3. Landis C.M.: Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics. J. Mech. Phys. Solids 50, 127–152 (2002)

    Article  MATH  Google Scholar 

  4. Li F., Fang D.: Simulations of domain switching in ferroelectrics by a three dimensional finite element. Mech. Mater. 36, 959–973 (2004)

    Article  Google Scholar 

  5. Kamlah M., Liskowsky A.C., McMeeking R.M., Balke H.: Finite element simulation of a polycrystalline ferroelectric based on a multidomain single crystal switching model. Int. J. Solids Struct. 42, 2949–2964 (2005)

    Article  MATH  Google Scholar 

  6. Klinkel S.: A phenomenological constitutive model for ferroelastic and ferroelectric hysteresis effects in ferroelectric ceramics. Int. J. Solids Struct. 43, 7197–7222 (2006)

    Article  MATH  Google Scholar 

  7. Li Y., Shouwen Y., Xiqiao F.: A simple constitutive model for ferroelectric ceramics under electrical/mechanical loading. Acta Mech. Solida Sin. 20, 1–8 (2007)

    Google Scholar 

  8. Kim S.J., Jiang Q.: A finite element model for rate-dependent behavior of ferroelectric ceramics. Int. J. Solids Struct. 39, 1015–1030 (2002)

    Article  MATH  Google Scholar 

  9. Pathak A., McMeeking R.M.: Three-dimensional finite element simulations of ferroelectric polycrystals under electrical and mechanical loading. J. Mech. Phys. Solids 56, 663–683 (2008)

    Article  MATH  Google Scholar 

  10. Kim S.J.: A prediction of rate-dependent behaviour in ferroelectric polycrystals. Mater. Sci. Eng. B 141, 34–42 (2007)

    Article  Google Scholar 

  11. Belov A.Y., Kreher W.S.: Viscoplastic behavior of Perovskite type ferroelectrics. Mater. Sci. Eng. B 118, 7–11 (2005)

    Article  Google Scholar 

  12. Kim S.J., Lee C.H.: Creep behavior of a poled PZT wafer under longitudinal tensile stress and through thickness electric field. Int. J. Solids Struct. 46, 716–725 (2009)

    Article  Google Scholar 

  13. Kim S.J.: Predictions of tensile creep behavior of a PZT wafer by a normally distributed free energy model. Mech. Mater. 41, 1253–1263 (2009)

    Article  Google Scholar 

  14. Su Y., Weng G.J.: The shift of Curie temperature and evolution of ferroelectric domain in ferroelectric crystals. J. Mech. Phys. Solids 53, 2071–2099 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim S.J.: A rate-dependent thermo-electro-mechanical free energy model for Perovskite type single crystals. Int. J. Eng. Sci. 45, 770–785 (2007)

    Article  Google Scholar 

  16. Kim S.J., Seelecke S.: A rate-dependent three-dimensional free energy model for ferroelectric single crystals. Int. J. Solids Struct. 44, 1196–1209 (2007)

    Article  MATH  Google Scholar 

  17. Kim S.J., Kim J.H., Lee C.H.: Domain switching and creep behavior of a poled PZT wafer under through-thickness electric fields at high temperatures. Acta Mater. 58, 2237–2249 (2010)

    Article  Google Scholar 

  18. Kim S.J., Kim Y.S.: State-dependent pyroelectric and thermal expansion coefficients in a PZT wafer. Ceram. Int. 36, 2189–2196 (2010)

    Article  Google Scholar 

  19. Webber K.G., Aulbach E., Key T., Marsilius M., Granzow T., Rödel J.: Temperature-dependent ferroelastic switching of soft lead zirconate titanate. Acta Mater. 57, 4614–4623 (2009)

    Article  Google Scholar 

  20. Kim S.J.: A constitutive model for thermo-electro-mechanical behavior of ferroelectric polycrystals near room temperature. Int. J. Solids Struct. 48, 1318–1329 (2011)

    Article  MATH  Google Scholar 

  21. Muliana A.: Time dependent behavior of ferroelectric materials undergoing changes in their material properties with electric field and temperature. Int. J. Solids Struct. 48, 2718–2731 (2011)

    Article  Google Scholar 

  22. Wang D., Fotinich Y., Carman G.: Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J. Appl. Phys. 83, 5342–5350 (1998)

    Article  Google Scholar 

  23. Nye J.F.: Physical Properties of Crystals. Oxford Science Publications, Oxford (1985)

    Google Scholar 

  24. Kim S.J.: Macroscopic comparison of ferroelectric domain switching at a PZT wafer at different temperatures. Curr. Appl. Phys. 11, S200–S207 (2011)

    Google Scholar 

  25. Kounga A.B., Granzow T., Aullbach E., Hinterstein M.: High-temperature poling of ferroelectrics. J. Appl. Phys. 104, 024116 (2008)

    Article  Google Scholar 

  26. Mitoseriu L., Tura V., Papusoi C., Harnagea C.: Thermal dependences of the switching properties of barium titanate ceramics. Mater. Lett. 29, 25–29 (1996)

    Article  Google Scholar 

  27. Lee N., Kim S.J.: Effects of loading rate and temperature on domain switching and evolutions of reference remnant state variables during polarization reversal in a PZT wafer. Ceram. Int. 38, 1115–1126 (2012)

    Article  Google Scholar 

  28. Lynch C.S.: The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Mater. 44, 4137–4148 (1996)

    Article  Google Scholar 

  29. Zhou D., Kamlah M., Munz D.: Effects of uniaxial prestress on the ferroelectric hysteresis response of soft PZT. J. Eur. Ceram. Soc. 25, 425–432 (2005)

    Article  Google Scholar 

  30. Chong K.B., Guiu F., Reece M.J.: Thermal activation of ferroelectric switching. J. Appl. Phys. 103, 014101 (2008)

    Article  Google Scholar 

  31. Senousy M.S., Rajapakse R.K.N.D., Gadala M.S.: A temperature-dependent two-step domain-switching model for ferroelectric materials. Acta Mater. 57, 6135–6145 (2009)

    Article  Google Scholar 

  32. Forrester J.S., Kisi E.H.: Ferroelastic switching in a soft lead zirconate titanate. J. Euro. Ceram. Soc. 24, 595–602 (2004)

    Article  Google Scholar 

  33. Zhou D., Kamlah M.: Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Mater. 54, 1389–1396 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Joo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ. Normally distributed free energy model and creep behavior of ferroelectric polycrystals at room and high temperatures. Acta Mech 223, 2091–2105 (2012). https://doi.org/10.1007/s00707-012-0693-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0693-1

Keywords

Navigation