Skip to main content
Log in

A model for regular desiccation cracks formation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A desiccation theory is developed providing a rational framework for a three-dimensional analysis of shrinkage and crack formation in a stiff clay surface layer. With the present model, we are estimating the shrinkage stress and the chemical potential variation in a morpheme produced after cracking, in a stiff clay surface layer, in terms of measurable quantities. In regular shrinkage morphemes, the shrinkage stresses are calculated from the shrinkage displacement and moisture content change. Other parameters such as the water mobility are introduced in order to express the chemical potential and the entropy changes in terms of the moisture content change and temperature at various instants of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Elemental section of an area exposed by a new crack

a :

Coefficient

E :

Young’s modulus

e :

Linear strain

G :

Critical strain energy released rate

h :

Interstitial fluid pressure

h o :

Constant of integration

\({J_T^a}\) :

Desorbed flux of water

K(= P h /P v ):

Coefficient of lateral stress

L :

Major diameter of a soil column formed after cracking (assumed elliptical)

\({L_T^c}\) :

Wave length of maximum shrinkage

m w :

Mass of water

\({M_T^a}\) :

Water transportivity coefficient

N :

Normal on the external surface

P h , P v :

Lateral and vertical force driving shrinkage

P ij :

Direct shear forces driving shrinkage

r :

Internal radius of the morpheme

Q :

Heat absorbed during a given change

R :

Distance

s :

Critical strain energy released rate

S :

Entropy

T :

Temperature

ΔS i :

Entropy produced by the irreversible process

ΔS e :

Entropy flow to or from the environment

X ij :

Stress

X′:

Effective stress

X atm :

Atmospheric pressure

V :

Volume

U :

Internal energy

w :

Moisture content

W :

Work done

α :

Coefficient

β c :

Wave number of maximum shrinkage

γ :

Surface tension

λ :

Coefficient

μ w :

Chemical potential of the soil water

\({\xi^{p}}\) :

Iso-shrinkage width at the position p

ρ :

Bulk density

\({\varphi_{T}}\) :

Free energy at constant temperature per unit volume

\({\Phi_{T}}\) :

Free energy at constant temperature

\({\Phi_{P}=U+\Sigma x_{ij}P_{ij}}\) :

Total heat

References

  1. Auriault J.L.: Nonsaturated deformable porous media: quasistatics. Transp. Porous Media 2, 45–64 (1987)

    Article  Google Scholar 

  2. Aurianlt J.L., Lebaigue O., Bonnet G.: Dynamics of two immiscible fluids flowing through a deformable porous media. Transp. Porous Media 4, 105–128 (1989)

    Article  Google Scholar 

  3. Bachmat Y., Bear J.: Macroscopic modelling of transport phenomena in porous media, I. The continuum approach, II Applications to mass, momentum and energy transport. Transp. in Porous Media 1, 213–269 (1986)

    Article  Google Scholar 

  4. Brouswijk J.J.B.: Modelling of water balance, cracking and subsidence of clay soils. J. Hydrol. 97, 199–212 (1988)

    Article  Google Scholar 

  5. Callen H.B.: Thermodynamics, An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics. Wiley, London (1959)

    Google Scholar 

  6. Dasog G.S., Acton D.F., Mermust A.R., de Jong E.: Shrink–swell potential and cracking in clay soils of Saskatchewan. Can. J. Soil Sci. 68, 251–260 (1988)

    Article  Google Scholar 

  7. Gardner W.R., Fireman M.: Laboratory studies of evaporation from soil column in the presence of water table. Soil Sci. 85, 244–249 (1958)

    Article  Google Scholar 

  8. Gardner W.R., Hillel D.: The relation of external evaporative conditions to the drying of soils. J. Geophys. Res. 67(110), 4319–4325 (1962)

    Article  Google Scholar 

  9. Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1962)

    Google Scholar 

  10. Haines W.B.: The volume changes associated with variations of water content in soil. J. Agric. Sci. 13, 296–310 (1923)

    Article  Google Scholar 

  11. Karalis T.K.: On the elastic deformation of non-saturated swelling soils. Acta Mechanica 84, 19–45 (1990)

    Article  Google Scholar 

  12. Karalis T.K.: Compressibilité des argiles gonflantes non saturées a partir des essais rhéologiques. Can. Geothech. J. 67, 90–104 (1990)

    Article  Google Scholar 

  13. Karalis T.K.: Quelques résultats théoriques et expérimentales concernant le gonflement anisotrope. Journal de Physique 2 1(7), 717–738 (1991)

    Google Scholar 

  14. Karalis T.K.: Water flow in non-saturated swelling soil. Int. J. Eng. Sci. 5, 751–774 (1993)

    Article  Google Scholar 

  15. Karalis T.K.: Thermodynamics of phase transitions in swelling/shrinking surficial soil layers. Mater. Sci. Eng./A 175, 247–264 (1994)

    Article  Google Scholar 

  16. Karalis T.K.: Mechanical behaviour of a non saturated soil swelling non hydrostatically. Appl. Mech. Rev. 48(10), 623–643 (1995)

    Article  Google Scholar 

  17. Karalis T.K.: On the optimization of shrinkage in soft cohesive soils. Acta Mechanica 171, 119–131 (2004)

    Article  MATH  Google Scholar 

  18. Kowalski S.J., Strumillo Cz.: Moisture transport, thermodynamics, and boundary conditions in porous materials in presence of mechanical stresses. Chem. Eng. Sci. 52(7), 1141–1150 (1997)

    Article  Google Scholar 

  19. Murad M.A., Bennethum L.S., Cushman J.H.: A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation. Transp. in Porous Media 19, 93–122 (1995)

    Google Scholar 

  20. Mainguy M., Ulm F.-J.: Coupled diffusion-dissolution around a fracture channel: the solute congestion phenomenon. Transp. Porous Media 80, 481–497 (2001)

    Google Scholar 

  21. Raats, P.A.C.: Mechanics of cracking soils. In: Bouma, J., Raats, P.A.C. (eds.) Proceedings ISSS Symposium on Water and Solute Movement in Heavy Clay Soils. International Institute for land Reclamation and Improvement, Wageningen, The Netherlands, pp. 23–38 (1984)

  22. Sridharan A., Rao G.V.: Mechanisms controlling volume change of saturated clays and the role of the effective stress concept. Geotechnique 23(3), 359–382 (1973)

    Article  Google Scholar 

  23. Tempany H.A.: The shrinkage of soils. J. Agric. Sc. 8, 312–333 (1917)

    Article  Google Scholar 

  24. Terada K., Ito T., Kikuchi N.: Characterization of the mechanical behaviours of solid–fluid mixture by the homogenization method. Comput. Methods Appl. Mech. Eng. 153, 223–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Karalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karalis, T.K., Karalis, K.T. A model for regular desiccation cracks formation. Acta Mech 223, 1517–1536 (2012). https://doi.org/10.1007/s00707-012-0672-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0672-6

Keywords

Navigation